[使用“ to_dict()”和“ json.dump()”通过字典将数据帧转换为JSON
Posted
tags:
篇首语:本文由小常识网(cha138.com)小编为大家整理,主要介绍了[使用“ to_dict()”和“ json.dump()”通过字典将数据帧转换为JSON相关的知识,希望对你有一定的参考价值。
我正在尝试将数据框转换为特定的JSON格式。我曾尝试分别使用pandas和json模块中的“ to_dict()”和“ json.dump()”方法来执行此操作,但是我无法获得我想要的JSON格式。举例说明:
df = pd.DataFrame({
"Location": ["1ST"] * 3 + ["2ND"] * 3,
"Date": ["2019-01", "2019-02", "2019-03"] * 2,
"Category": ["A", "B", "C"] * 2,
"Number": [1, 2, 3, 4, 5, 6]
})
def dataframe_to_dictionary(df, orientation):
dictionary = df.to_dict(orient=orientation)
return dictionary
dict_records = dataframe_to_dictionary(df, "records")
with open("./json_records.json", "w") as json_records:
json.dump(dict_records, json_records, indent=2)
dict_index = dataframe_to_dictionary(df, "index")
with open("./json_index.json", "w") as json_index:
json.dump(dict_index, json_index, indent=2)
当我将“ dict_records”转换为JSON时,将得到以下形式的数组:
[
{
"Location": "1ST",
"Date": "2019-01",
"Category": "A",
"Number": 1
},
{
"Location": "1ST",
"Date": "2019-02",
"Category": "B",
"Number": 2
},
...
]
而且,当我将“ dict_index”转换为JSON时,会得到以下形式的对象:
{
"0": {
"Location": "1ST",
"Date": "2019-01",
"Category": "A",
"Number": 1
},
"1": {
"Location": "1ST",
"Date": "2019-02",
"Category": "B",
"Number": 2
}
...
}
但是,我试图获得如下所示的格式(其中key =位置,值= [{}])。预先感谢您的帮助。
{
1ST: [
{
"Date": "2019-01",
"Category": "A",
"Number" 1
},
{
"Date": "2019-02",
"Category": "B",
"Number" 2
},
{
"Date": "2019-03",
"Category": "C",
"Number" 3
}
],
2ND: [
{},
{},
{}
]
}
答案
这可以通过groupby实现:
gb = df.groupby('Location')
{k: v.drop('Location', axis=1).to_dict(orient='records') for k, v in gb}
以上是关于[使用“ to_dict()”和“ json.dump()”通过字典将数据帧转换为JSON的主要内容,如果未能解决你的问题,请参考以下文章
Django - 在模板中格式化/访问 Pandas.to_dict() 数据框
Pandas使用to_dict函数将dataframe转化为字典(dict)格式数据并指定orientation参数生成不同形式的字典