介绍一下JUnit4?
Posted
tags:
篇首语:本文由小常识网(cha138.com)小编为大家整理,主要介绍了介绍一下JUnit4?相关的知识,希望对你有一定的参考价值。
测试的概念长期以来,我所接触的软件开发人员很少有人能在开发的过程中进行测试工作。大部分的项目都是在最终验收的时候编写测试文档。有些项目甚至没有测试文档。现在情况有了改变。我们一直提倡UML、RUP、软件工程、CMM,目的只有一个,提高软件编写的质量。举一个极端的例子:如果你是一个超级程序设计师,一个传奇般的人物。(你可以一边喝咖啡,一边听着音乐,同时编写这操作系统中关于进程调度的模块,而且两天时间内就完成了!)我真得承认,有这样的人。(那个编写UNIX中的vi编辑器的家伙就是这种人。)然而非常遗憾的是这些神仙们并没有留下如何修成正果的README。所以我们这些凡人--在同一时间只能将注意力集中到若干点(据科学统计,我并不太相信,一般的人只能同时考虑最多7个左右的问题,高手可以达到12个左右),而不能既纵览全局又了解细节--只能期望于其他的方式来保证我们所编写的软件质量。
为了说明我们这些凡人是如何的笨。有一个聪明人提出了软件熵(software entropy)的概念:一个程序从设计很好的状态开始,随着新的功能不断地加入,程序逐渐地失去了原有的结构,最终变成了一团乱麻。你可能会争辩,在这个例子中,设计很好的状态实际上并不好,如果好的话,就不会发生你所说的情况。是的,看来你变聪明了,可惜你还应该注意到两个问题:1)我们不能指望在恐龙纪元(大概是十年前)设计的结构到了现在也能适用吧。2)拥有签字权的客户代表可不理会加入一个新功能是否会对软件的结构有什么影响,即便有影响也是程序设计人员需要考虑的问题。如果你拒绝加入这个你认为致命的新功能,那么你很可能就失去了你的住房贷款和面包(对中国工程师来说也许是米饭或面条,要看你是南方人还是北方人)。
另外,需要说明的是我看过的一些讲解测试的书都没有我写的这么有人情味(不好意思...)。我希望看到这片文章的兄弟姐妹能很容易地接受测试的概念,并付诸实施。所以有些地方写的有些夸张,欢迎对测试有深入理解的兄弟姐妹能体察民情,并不吝赐教。
好了,我们现在言归正传。要测试,就要明白测试的目的。我认为测试的目的很简单也极具吸引力:写出高质量的软件并解决软件熵这一问题。想象一下,如果你写的软件和Richard Stallman(GNU、FSF的头儿)写的一样有水准的话,是不是很有成就感?如果你一致保持这种高水准,我保证你的薪水也会有所变动。
测试也分类,白箱测试、黑箱测试、单元测试、集成测试、功能测试...。我们先不管有多少分类,如何分类。先看那些对我们有用的分类,关于其他的测试,有兴趣的人可参阅其他资料。白箱测试是指在知道被测试的软件如何(How)完成功能和完成什么样(What)的功能的条件下所作的测试。一般是由开发人员完成。因为开发人员最了解自己编写的软件。本文也是以白箱测试为主。黑箱测试则是指在知道被测试的软件完成什么样(What)的功能的条件下所作的测试。一般是由测试人员完成。黑箱测试不是我们的重点。本文主要集中在单元测试上,单元测试是一种白箱测试。目的是验证一个或若干个类是否按所设计的那样正常工作。集成测试则是验证所有的类是否能互相配合,协同完成特定的任务,目前我们暂不关心它。下面我所提到的测试,除非特别说明,一般都是指单元测试。
需要强调的是:测试是一个持续的过程。也就是说测试贯穿与开发的整个过程中,单元测试尤其适合于迭代增量式(iterative and incremental)的开发过程。Martin Fowler(有点儿像引用孔夫子的话)甚至认为:“在你不知道如何测试代码之前,就不应该编写程序。而一旦你完成了程序,测试代码也应该完成。除非测试成功,你不能认为你编写出了可以工作的程序。”我并不指望所有的开发人员都能有如此高的觉悟,这种层次也不是一蹴而就的。但我们一旦了解测试的目的和好处,自然会坚持在开发过程中引入测试。
因为我们是测试新手,我们也不理会那些复杂的测试原理,先说一说最简单的:测试就是比较预期的结果是否与实际执行的结果一致。如果一致则通过,否则失败。看下面的例子:
//将要被测试的类
public class Car
public int getWheels()
return 4;
//执行测试的类
public class testCar
public static void main(String[] args)
testCar myTest = new testCar();
myTest.testGetWheels();
public testGetWheels()
int expectedWheels = 4;
Car myCar = Car();
if (expectedWheels==myCar.getWheels())
System.out.println("test [Car]: getWheels works perfected!");
else
System.out.println("test [Car]: getWheels DOESN'T work!");
如果你立即动手写了上面的代码,你会发现两个问题,第一,如果你要执行测试的类testCar,你必须必须手工敲入如下命令:
[Windows] d:>java testCar
[Unix] % java testCar
即便测试如例示的那样简单,你也有可能不愿在每次测试的时候都敲入上面的命令,而希望在某个集成环境中(IDE)点击一下鼠标就能执行测试。后面的章节会介绍到这些问题。第二,如果没有一定的规范,测试类的编写将会成为另一个需要定义的标准。没有人希望查看别人是如何设计测试类的。如果每个人都有不同的设计测试类的方法,光维护被测试的类就够烦了,谁还顾得上维护测试类?另外有一点我不想提,但是这个问题太明显了,测试类的代码多于被测试的类!这是否意味这双倍的工作?不!1)不论被测试类-Car 的 getWheels 方法如何复杂,测试类-testCar 的testGetWheels 方法只会保持一样的代码量。2)提高软件的质量并解决软件熵这一问题并不是没有代价的。testCar就是代价。
我们目前所能做的就是尽量降低所付出的代价:我们编写的测试代码要能被维护人员容易的读取,我们编写测试代码要有一定的规范。最好IDE工具可以支持这些规范。 好了,你所需要的就是JUnit。一个Open Source的项目。用其主页上的话来说就是:“JUnit是由 Erich Gamma 和 Kent Beck 编写的一个回归测试框架(regression testing work)。用于Java开发人员编写单元测试之用。”所谓框架就是 Erich Gamma 和 Kent Beck 定下了一些条条框框,你编写的测试代码必须遵循这个条条框框:继承某个类,实现某个接口。其实也就是我们前面所说的规范。好在JUnit目前得到了大多数软件工程师的认可。遵循JUnit我们会得到很多的支持。回归测试就是你不断地对所编写的代码进行测试:编写一些,测试一些,调试一些,然后循环这一过程,你会不断地重复先前的测试,哪怕你正编写其他的类,由于软件熵的存在,你可能在编写第五个类的时候发现,第五个类的某个操作会导致第二个类的测试失败。通过回归测试我们抓住了这条大Bug。
回归测试框架-JUnit
通过前面的介绍,我们对JUnit有了一个大概的轮廓。知道了它是干什么的。现在让我们动手改写上面的测试类testCar使其符合Junit的规范--能在JUnit中运行。
//执行测试的类(JUnit版)
import junit.work.*;
public class testCar extends TestCase
protected int expectedWheels;
protected Car myCar;
public testCar(String name)
super(name);
protected void setUp()
expectedWheels = 4;
myCar = new Car();
public static Test suite()
/*
* the type safe way
*
TestSuite suite= new TestSuite();
suite.addTest(
new testCar("Car.getWheels")
protected void runTest() testGetWheels();
);
return suite;
*/
/*
* the dynamic way
*/
return new TestSuite(testCar.class);
public void testGetWheels()
assertEquals(expectedWheels, myCar.getWheels());
改版后的testCar已经面目全非。先让我们了解这些改动都是什么含义,再看如何执行这个测试。
1>import语句,引入JUnit的类。(没问题吧)
2>继承 TestCase 。可以暂时将一个TestCase看作是对某个类进行测试的方法的集合。详细介绍请参看JUnit资料
3>setUp()设定了进行初始化的任务。我们以后会看到setUp会有特别的用处。
4>testGetWheeels()对预期的值和myCar.getWheels()返回的值进行比较,并打印比较的结果。assertEquals是junit.work.Assert中所定义的方法,junit.work.TestCase继承了junit.work.Assert。
5>suite()是一个很特殊的静态方法。JUnit的TestRunner会调用suite方法来确定有多少个测试可以执行。上面的例子显示了两种方法:静态的方法是构造一个内部类,并利用构造函数给该测试命名(test name, 如 Car.getWheels ),其覆盖的runTest()方法,指明了该测试需要执行那些方法--testGetWheels()。动态的方法是利用内省(reflection )来实现runTest(),找出需要执行那些测试。此时测试的名字即是测试方法(test method,如testGetWheels)的名字。JUnit会自动找出并调用该类的测试方法。
6>将TestSuite看作是包裹测试的一个容器。如果将测试比作叶子节点的话,TestSuite就是分支节点。实际上TestCase,TestSuite以及TestSuite组成了一个composite Pattern。 JUnit的文档中有一篇专门讲解如何使用Pattern构造Junit框架。有兴趣的朋友可以查看JUnit资料。
如何运行该测试呢?手工的方法是键入如下命令:
[Windows] d:>java junit.textui.TestRunner testCar
[Unix] % java junit.textui.TestRunner testCar
别担心你要敲的字符量,以后在IDE中,只要点几下鼠标就成了。运行结果应该如下所示,表明执行了一个测试,并通过了测试:
.
Time: 0
OK (1 tests)
如果我们将Car.getWheels()中返回的的值修改为3,模拟出错的情形,则会得到如下结果:
.F
Time: 0
There was 1 failure:
1) testGetWheels(testCar)junit.work.AssertionFailedError: expected:<4> but was:<3>
at testCar.testGetWheels(testCar.java:37)
FAILURES!!!
Tests run: 1, Failures: 1, Errors: 0
注意:Time上的小点表示测试个数,如果测试通过则显示OK。否则在小点的后边标上F,表示该测试失败。注意,在模拟出错的测试中,我们会得到详细的测试报告“expected:<4> but was:<3>”,这足以告诉我们问题发生在何处。下面就是你调试,测试,调试,测试...的过程,直至得到期望的结果。
Design by Contract(这句话我没法翻译)
Design by Contract本是Bertrand Meyer(Eiffel语言的创始人)开发的一种设计技术。我发现在JUnit中使用Design by Contract会带来意想不到的效果。Design by Contract的核心是断言(assersion)。断言是一个布尔语句,该语句不能为假,如果为假,则表明出现了一个bug。Design by Contract使用三种断言:前置条件(pre-conditions)、后置条件(post-conditions)和不变式(invariants)这里不打算详细讨论Design by Contract的细节,而是希望其在测试中能发挥其作用。
前置条件在执行测试之前可以用于判断是否允许进入测试,即进入测试的条件。如 expectedWheels > 0, myCar != null。后置条件用于在测试执行后判断测试的结果是否正确。如 expectedWheels==myCar.getWheels()。而不变式在判断交易(Transaction)的一致性(consistency)方面尤为有用。我希望JUnit可以将Design by Contract作为未来版本的一个增强。
Refactoring(这句话我依然没法翻译)
Refactoring本来与测试没有直接的联系,而是与软件熵有关,但既然我们说测试能解决软件熵问题,我们也就必须说出解决之道。(仅仅进行测试只能发现软件熵,Refactoring则可解决软件熵带来的问题。)软件熵引出了一个问题:是否需要重新设计整个软件的结构?理论上应该如此,但现实不允许我们这么做。这或者是由于时间的原因,或者是由于费用的原因。重新设计整个软件的结构会给我们带来短期的痛苦。而不停地给软件打补丁甚至是补丁的补丁则会给我们带来长期的痛苦。(不管怎样,我们总处于水深火热之中)
Refactoring是一个术语,用于描述一种技术,利用这种技术我们可以免于重构整个软件所带来的短期痛苦。当你refactor时,你并不改变程序的功能,而是改变程序内部的结构,使其更易理解和使用。如:该变一个方法的名字,将一个成员变量从一个类移到另一个类,将两个类似方法抽象到父类中。所作的每一个步都很小,然而1-2个小时的Refactoring工作可以使你的程序结构更适合目前的情况。Refactoring有一些规则:
1> 不要在加入新功能的同时refactor已有的代码。在这两者间要有一个清晰的界限。如每天早上1-2个小时的Refactoring,其余时间添加新的功能。
2> 在你开始Refactoring前,和Refactoring后都要保证测试能顺利通过。否则Refactoring没有任何意义。
3> 进行小的Refactoring,大的就不是Refactoring了。如果你打算重构整个软件,就没有必要Refactoring了。
只有在添加新功能和调试bug时才又必要Refactoring。不要等到交付软件的最后关头才Refactoring。那样和打补丁的区别不大。Refactoring 用在回归测试中也能显示其威力。要明白,我不反对打补丁,但要记住打补丁是应该最后使用的必杀绝招。(打补丁也需要很高的技术,详情参看微软网站)
IDE对JUnit的支持
目前支持JUnit的Java IDE 包括 IDE 方式 个人评价(1-5,满分5)
Forte for Java 3.0 Enterprise Edition plug-in 3
JBuilder 6 Enterprise Edition integrated with IDE 4
Visual Age for Java support N/A
在IDE中如何使用JUnit,是非常具体的事情。不同的IDE有不同的使用方法。一旦理解了JUnit的本质,使用起来就十分容易了。所以我们不依赖于具体的IDE,而是集中精力讲述如何利用JUnit编写单元测试代码。心急的人可参看资料。 参考技术A JUnit4是JUnit框架有史以来的最大改进,其主要目标便是利用Java5的Annotation特性简化测试用例的编写。
先简单解释一下什么是Annotation,这个单词一般是翻译成元数据。元数据是什么?元数据就是描述数据的数据。也就是说,这个东西在Java里面可 以用来和public、static等关键字一样来修饰类名、方法名、变量名。修饰的作用描述这个数据是做什么用的,差不多和public描述这个数据是 公有的一样。想具体了解可以看Core Java2。废话不多说了,直接进入正题。
我们先看一下在JUnit3中我们是怎样写一个单元测试的。比如下面一个类:
public class AddOperation
public int add(int x,int y)
return x+y;
我们要测试add这个方法,我们写单元测试得这么写:
import junit.framework.TestCase;
import static org.junit.Assert.*;
public class AddOperationTest extends TestCase
public void setUp() throws Exception
public void tearDown() throws Exception
public void testAdd()
System.out.println(\"add\");
int x = 0;
int y = 0;
AddOperationinstance = new AddOperation();
int expResult = 0;
int result =instance.add(x, y);
assertEquals(expResult,result);
可以看到上面的类使用了JDK5中的静态导入,这个相对来说就很简单,只要在import关键字后面加上static关键字,就可以把后面的类的static的变量和方法导入到这个类中,调用的时候和调用自己的方法没有任何区别。
我们可以看到上面那个单元测试有一些比较霸道的地方,表现在:
1.单元测试类必须继承自TestCase。
2.要测试的方法必须以test开头。
如果上面那个单元测试在JUnit4中写就不会这么复杂。代码如下:
import junit.framework.TestCase;
import org.junit.After;
import org.junit.Before;
import org.junit.Test;
import static org.junit.Assert.*;
/**
*
* @author bean
*/
public class AddOperationTest extends TestCase
public AddOperationTest()
@Before
public void setUp() throws Exception
@After
public void tearDown() throws Exception
@Test
public void add()
System.out.println(\"add\");
int x = 0;
int y = 0;
AddOperationinstance = new AddOperation();
int expResult = 0;
int result =instance.add(x, y);
assertEquals(expResult,result);
我们可以看到,采用Annotation的JUnit已经不会霸道的要求你必须继承自TestCase了,而且测试方法也不必以test开头了,只要以@Test元数据来描述即可。
从上面的例子可以看到在JUnit4中还引入了一些其他的元数据,下面一一介绍:
@Before:
使用了该元数据的方法在每个测试方法执行之前都要执行一次。
@After:
使用了该元数据的方法在每个测试方法执行之后要执行一次。
注意:@Before和@After标示的方法只能各有一个。这个相当于取代了JUnit以前版本中的setUp和tearDown方法,当然你还可以继续叫这个名字,不过JUnit不会霸道的要求你这么做了。
@Test(expected=*.class)
在JUnit4.0之前,对错误的测试,我们只能通过fail来产生一个错误,并在try块里面assertTrue(true)来测试。现在,通过@Test元数据中的expected属性。expected属性的值是一个异常的类型
@Test(timeout=xxx):
该元数据传入了一个时间(毫秒)给测试方法,
如果测试方法在制定的时间之内没有运行完,则测试也失败。
@ignore:
该元数据标记的测试方法在测试中会被忽略。当测试的方法还没有实现,或者测试的方法已经过时,或者在某种条件下才能测试该方法(比如需要一个数据库联接, 而在本地测试的时候,数据库并没有连接),那么使用该标签来标示这个方法。同时,你可以为该标签传递一个String的参数,来表明为什么会忽略这个测试 方法。比如:@lgnore(“该方法还没有实现”),在执行的时候,仅会报告该方法没有实现,而不会运行测试方法。
junit学习之junit的基本介绍
Junit目前在一些大的公司或者相对规范的软件中使用的比较多,相当多的小公司并没有把单元测试看的太重要。在大点的公司开发人员每天上班后,第一件事情就是从svn上把自己负责的代码checkout下来,然后运行单元测试,如果单元测试通过,那么说明自己的代码没有问题,然后就在代码块上修改与添加,完成后再用junit进行测试,测试完成后如果没有问题,那么就把相应的代码块提交给svn上。
测试一般分为:单元测试、集成测试(主要看一块代码加进去后,系统会不会有问题)、验收测试和压力测试。
在以前的的项目中也用过Junit,当时的使用只是把Junit当成一个有多个main方法的一个函数。假如一个项目非常的大,测试的东西非常的多,如果不用Junit的话,那么这个工作量是非常大的。单元测试的最基本的一个功能是能进行自动化测试。单元测试都是通过断言的方式来确定结果是否正确,即使用Assert。
1、从网站上下载junit的新版本,http://search.maven.org/#search%7Cgav%7C1%7Cg%3A%22junit%22%20AND%20a%3A%22junit%22 上下载相应的版本,这里下载的是junit4.10
2、在myeclipse中新建一个java项目,名称为junit01,并在新建一个文件夹,名称为lib,把上面下载的junit-4.10复制到里面,并build path,即添加到类路径中,如下图所示:
3、新建一个类Calcuate,其功能主要实现加减乘除,如下图所示,其所在的包为cn.whp.util
4、创建上面的类Calcuate中新建测试类,首先在myeclipse中创建一个source folder,将其命名成test,然后在其下创建一个与类Calcuate类在相同包的包,如下图所示:
5、junit3与junit4的区别还是比较明显的,在junit3中,如果某个类是测试类,必须将其继承类TestCase,如果某个方法是测试方法,必须让这个方法以testXX开头,如果希望指定某个测试方法运行之前运行某个初始化方法,这个方法的名称必须是setUp,如果希望在某个测试方法运行之后运行某个释放资源的方法,这个方法的名称必须是tearDown。
在junit4中,一个POJO类就是一个测试类,测试方法通过@Test来标识,初始化方法通过@Before来标识,释放资源的方法通过@After来标识,但是为了让junit4的测试类在junit3中也可以使用,习惯于把初始化方法命名为setUp,释放资源的方法命名为tearDown。Test中的测试方法一般以Test来开始。其中标识为Before注解的方法,每次运行测试类,都会执行标识为@After与@Before的方法。如下图所示:
6、在junit4中提供了一个Assert的类,这个类中有大量的静态方法进行断言的处理,在junit3中由于继承了TestCase,这个TestCase就可以直接assert,而junit4中需要先引入Assert类。如下图:
在上图中使用了Assert类中的assertEquals方法,这方法的第一个参数意思是:如果方法cal.add(12,22)计算的结果不为34,那么就会打印出“加法有问题”的信息。第二个参数为方法cal.add(12,22)的执行结果,第三个参数是开发人员预计的函数cal.add(12,22)执行后的结果,这里预计12与22相加后其结果为34,如果在执行测试方法后,rel不等于34,那么就会报加法有问题。如果结果等于34,那么这个方法就测试通过。把上图中最后一个参数的值34改成35,那么执行junit测试后将会出现如下错误:
如果想让上面的测试类可以在junit3中运行,可以把Assert类静态的导入,这样在调用每个静态方法时,就不用都写上Assert类了,如下图所示:
然后把所有别的测试方法补全,使用junit测试比使用main方法测试有很大的不同的,每个标识为@Test的方法都是一个可运行的方法,并且他们之间互不影响,例如testAddd方法出现问题了,并不影响testMinus方法的运行。这就是单元测试的好处,如下图:
7、在测试除法cal.divide(3,0),如果除数为0,这个方法应该会抛出异常。现在的测试目标是,如果运行测试方法后,测试方法没有抛出异常,那么这个测试方法就不能通过。这时就需要用到junit的ArithmeticException。如下图所示:
这里如果把cal.divide(20,0)改成cal.divide(20,10),这样divide是没有问题的,但是这时测试类中的testDivideException方法执行junit测试后就不能通过了,因为这个测试方法已经断言所要测试的方法divide要抛出异常,结果没有抛出异常,所以junit测试是不能通过的。如下图所示:
测试结果提示,应该抛出一个异常,结果没有抛出异常。
8、有时在测试时需要有这样的需求,就是对一个方法的时间进行测试,例如,要让一个方法,200毫秒里运行完,如果这个方法200毫秒不能运行完,那么这个方法就应该抛出异常,示例中将方法time中线程沉睡300毫秒,那么这个方法就不可能在200毫秒内完成,所以这个方法就会抛出异常。这就可以做一些方法性能上的测试,把Thread去掉,那么这个测试就可正常通过。如下图所示:
10、Junit的最基本的东西基本是这样的,断言、测试异常,捕获异常,测试方法的性能。例子代码在附件中。
以上是关于介绍一下JUnit4?的主要内容,如果未能解决你的问题,请参考以下文章