将包含许多嵌套对象的JSON文件保存到列表中

Posted

tags:

篇首语:本文由小常识网(cha138.com)小编为大家整理,主要介绍了将包含许多嵌套对象的JSON文件保存到列表中相关的知识,希望对你有一定的参考价值。

我目前有一个JSON文件具有以下格式。请记住,这不是整个文件。整个JSON文件由数百个键,值对的列表组成,它们在方括号[] [] []等之间一个接一个地跟随。我试图存储这些单独的列表,例如下面的列表在一个结构中,以便我可以迭代结构并解析每个列表的文件名,标签等。我最初尝试使用json.loads()导入它,但我有问题,因为对象的嵌套性质。我将非常感谢有关如何将此文件导入列表或其他适当的python结构的任何想法/见解。

[
   {
      "File_Name": "1.jpg",
      "Analysis": {
         "Labels": [
            {
               "Confidence": 94.77251434326172,
               "Name": "Flora"
            },
            {
               "Confidence": 94.77251434326172,
               "Name": "Grass"
            },
            {
               "Confidence": 94.77251434326172,
               "Name": "Plant"
            },
            {
               "Confidence": 78.49254608154297,
               "Name": "Animal"
            },
            {
               "Confidence": 78.49254608154297,
               "Name": "Cheetah"
            },
            {
               "Confidence": 78.49254608154297,
               "Name": "Mammal"
            },
            {
               "Confidence": 78.49254608154297,
               "Name": "Wildlife"
            },
            {
               "Confidence": 69.79740142822266,
               "Name": "Field"
            },
            {
               "Confidence": 69.79740142822266,
               "Name": "Grassland"
            },
            {
               "Confidence": 69.79740142822266,
               "Name": "Outdoors"
            },
            {
               "Confidence": 67.31356048583984,
               "Name": "Leisure Activities"
            },
            {
               "Confidence": 67.31356048583984,
               "Name": "Walking"
            },
            {
               "Confidence": 57.44683837890625,
               "Name": "Jaguar"
            },
            {
               "Confidence": 57.44683837890625,
               "Name": "Leopard"
            },
            {
               "Confidence": 57.44683837890625,
               "Name": "Panther"
            },
            {
               "Confidence": 55.88261032104492,
               "Name": "Bush"
            },
            {
               "Confidence": 55.88261032104492,
               "Name": "Vegetation"
            },
            {
               "Confidence": 53.4413948059082,
               "Name": "Lawn"
            }
         ],
         "ResponseMetadata": {
            "RetryAttempts": 0,
            "HTTPStatusCode": 200,
            "RequestId": "978e32e4-1da8-11e8-a380-cd680f89684e",
            "HTTPHeaders": {
               "date": "Thu, 01 Mar 2018 23:30:59 GMT",
               "x-amzn-requestid": "978e32e4-1da8-11e8-a380-cd680f89684e",
               "content-length": "947",
               "content-type": "application/x-amz-json-1.1",
               "connection": "keep-alive"
            }
         },
         "OrientationCorrection": "ROTATE_0"
      }
   }
][
   {
      "File_Name": "2.jpg",
      "Analysis": {
         "Labels": [
            {
               "Confidence": 98.57389068603516,
               "Name": "Astronomy"
            },
            {
               "Confidence": 98.57389068603516,
               "Name": "Galaxy"
            },
            {
               "Confidence": 98.57389068603516,
               "Name": "Nebula"
            },
            {
               "Confidence": 98.57389068603516,
               "Name": "Night"
            },
            {
               "Confidence": 98.57389068603516,
               "Name": "Outdoors"
            },
            {
               "Confidence": 98.57389068603516,
               "Name": "Outer Space"
            },
            {
               "Confidence": 98.57389068603516,
               "Name": "Space"
            },
            {
               "Confidence": 98.57389068603516,
               "Name": "Universe"
            }
         ],
         "ResponseMetadata": {
            "RetryAttempts": 0,
            "HTTPStatusCode": 200,
            "RequestId": "98d2c109-1da8-11e8-a2d9-b91cf22c7f33",
            "HTTPHeaders": {
               "date": "Thu, 01 Mar 2018 23:30:59 GMT",
               "x-amzn-requestid": "98d2c109-1da8-11e8-a2d9-b91cf22c7f33",
               "content-length": "449",
               "content-type": "application/x-amz-json-1.1",
               "connection": "keep-alive"
            }
         },
         "OrientationCorrection": "ROTATE_0"
      }
   },
   {
      "File_Name": "2.jpg",
      "Analysis": {
         "Labels": [
            {
               "Confidence": 98.57389068603516,
               "Name": "Astronomy"
            },
            {
               "Confidence": 98.57389068603516,
               "Name": "Galaxy"
            },
            {
               "Confidence": 98.57389068603516,
               "Name": "Nebula"
            },
            {
               "Confidence": 98.57389068603516,
               "Name": "Night"
            },
            {
               "Confidence": 98.57389068603516,
               "Name": "Outdoors"
            },
            {
               "Confidence": 98.57389068603516,
               "Name": "Outer Space"
            },
            {
               "Confidence": 98.57389068603516,
               "Name": "Space"
            },
            {
               "Confidence": 98.57389068603516,
               "Name": "Universe"
            }
         ],
         "ResponseMetadata": {
            "RetryAttempts": 0,
            "HTTPStatusCode": 200,
            "RequestId": "98d2c109-1da8-11e8-a2d9-b91cf22c7f33",
            "HTTPHeaders": {
               "date": "Thu, 01 Mar 2018 23:30:59 GMT",
               "x-amzn-requestid": "98d2c109-1da8-11e8-a2d9-b91cf22c7f33",
               "content-length": "449",
               "content-type": "application/x-amz-json-1.1",
               "connection": "keep-alive"
            }
         },
         "OrientationCorrection": "ROTATE_0"
      }
   }
]
答案
big_json_file = json.loads(file_string)
big_list_of_labels = []

for file in big_json_file:
    big_list_of_labels.append(file['Analysis']['Labels'])

或者如果你想存储文件名和列表,我建议像:

my_processed_dict = {}
for file in big_json_file:
    my_processed_dict[file['File_Name']] = file['Analysis']['Labels']

您可以在其中使用以下内容迭代my_processed_dict:

for key, value in my_processed_dict.items():
    # value is the list of confidence values!
    pass

以上是关于将包含许多嵌套对象的JSON文件保存到列表中的主要内容,如果未能解决你的问题,请参考以下文章

从字典列表中创建嵌套的 json 对象

无法显示嵌套 JSON 文件/模型的数据

如何正确地将 JSON 字符串反序列化为包含另一个类的嵌套列表的类

将类对象列表保存到 JSON 文件中,以便以后读取

如何使用 Jersey 将嵌套列表编组为 JSON?我得到一个空数组或一个包含数组的单元素字典数组

如何使用Java更新JSON文件中的嵌套JSON对象?