python机器学习数学

Posted

tags:

篇首语:本文由小常识网(cha138.com)小编为大家整理,主要介绍了python机器学习数学相关的知识,希望对你有一定的参考价值。

这个代码该如何打

这个题目的意思是平铺一个28*28的numpy二维数组

```python
import numpy as np

def reshape(x):
    return x.flatten()  # 就是这么简单,一行搞定

    
image = np.random.randn(28, 28)
print(reshape(image))
```

顺便问一下,你这个是在哪个网站的习题

参考技术A 不明白怎么打是什么意思,code的内容如下:
import numpy as np
def reshape(x):
x_reshape = 28^2 #计算28*28
参考技术B 虽然机器学习领域没有一个专门的编程语言,但是有很多框架或库都提供基于 Python 的 API(比如 TensorFlow),又或者将 Python 用作建模语言(比如 PyTorch)。如今 Python 虽然在人工智能领域应用广泛,但是也存在一定的弊端 机器学习研究具有极高的计算需求,需要简化建模语言使得添加特定领域的优化和特征变得更加容易。训练模型需要优秀的硬件支持,以及良好的数值、较低的解释器开销和多种并行性的支持。

机器学习数学基础之高数篇——函数极限和导数(python版)

不知道大家有没有类似的经历,斗志满满地翻开厚厚的机器学习书,很快被一个个公式炸蒙了。

想要学习机器学习算法,却很难看的懂里面的数学公式,实际应用只会调用库里的函数,无法优化算法。

学好机器学习,没有数学知识是不行的。数学知识的积累是一个漫长的过程,罗马也不是一夜建成的。

如果想要入门机器学习,数学基础比较薄弱,想打牢相关数学基础,可以关注笔者,一起学习(数学大佬也可以来扫一眼python代码)~


接下来我们以高数(同济第七版)课后习题为例,使用python语言来求解函数和导数的习题。

这样大家做课后练习的时候,也可以用python验证一下做的对不对。

这里用到两个常见的Python库,sympy和numpy,学习的时候可以参考官方文档。

sympy 是Python语言编写的符号计算库,这里用于处理数学对象的计算称为符号计算。

官方在线文档:https://docs.sympy.org/dev/index.html

numpy是一个Python库,支持大量的多维数组及矩阵运算,提供用于数组快速操作的各种API。

官方在线文档:https://www.numpy.org.cn/reference/

函数极限

我们来看一下高数课本(同济第七版)对函数极限的定义:

当时上课的时候就觉得这段函数定义太反人类了啊,瞬间打击学习高数的兴趣。

为什么函数极限的定义会这么难以理解呢?

这里需要插入数学史的内容了,这个问题要追溯到几百年前…

古希腊的数学家在处理无穷小和极限问题时,使用穷竭法等方法非常的繁琐。

到了牛顿时代,微积分还不成熟,也就是说牛顿当时也没把无穷小和极限的问题弄明白。

后面一个个大牛都试图把相关的漏洞补齐,我们看到的这个ε-δ定义的极限,是由维尔斯特拉斯总结了前面各个大牛的经验,最终提出来的。

所以最终这个定义我们看不懂也正常,这个概念的形成大约经历了几百年,就算拿给当时的牛顿看也是蒙的呢。

不过这个定义,也是公认的非常严谨、接近本质的函数极限定义了。

光说概念太没意思了,学数学嘛,肯定要做题。我们来看几道高数题吧——


函数极限练习题1(高数课后练习1-3第五题 ):

证明:

python版证明:

import sympy
from sympy import oo
import numpy as np
x = sympy.Symbol('x')
f = (x ** 2 - 4)/(x + 2)
sympy.limit(f,x,-2)

输出:-4

函数极限练习题2(高数课后习题1-3第6题):

证明:

python版证明:

import sympy           #导入sympy符号计算库
from sympy import oo   #oo为无穷大符号
import numpy as np
x = sympy.Symbol('x')
f = sympy.sin(x)/sympy.sqrt(x)
sympy.limit(f,x,oo)    #求极限

输出:0

关于limit的用法,我们来查看官方文档:

导数

导数定义:

理解了概念,来做几道导数题吧——

导数练习题一(高数 总习题二 第8题(1)):

求下列导数:

python版求导:

import sympy
from sympy import *
from sympy.abc import x,y
diff(asin(sin(x)))

输出

cos(x)/sqrt(-sin(x)**2 + 1)

python求导数的三种写法

python中求导数主要有三种方法,我们用练习二来演示:

导数练习题二:

求下列导数:

方法一、使用sympy的diff函数。

diff版求导:

import sympy
from sympy import *
from sympy.abc import x,y
diff(5*x**4 + 4*x**3 +2*x**2 + x + 666)

输出:

20*x**3 + 12*x**2 + 4*x + 1
方法二、使用numpy库里的poly1d函数

在官方文档里,查看一下poly1d的用法:

poly1d版求导:

import numpy as np
p = np.poly1d([5,4, 0 ,2 ,1]) #构造多项式,每项是多项式前的系数,幂次由高到低,没有该幂次该项为0
print(np.polyder(p,1)) #求一阶导数
print(p.deriv(1))	   #另一种方法求一阶导数

输出:

    3      2
20 x + 12 x + 2
方法三、使用scipy.misc模块下的derivative函数

在官方文档里,查看一下derivative的用法:

derivative版求导:

import numpy as npfrom scipy.misc 
import derivative
def f(x):    
	return (5*x**4 + 4*x**3 +2*x**2 + x + 666)
print (derivative(f,3,dx=1e-6))  #求x=3时的导数 

输出:

661.0000001501248

以上是关于python机器学习数学的主要内容,如果未能解决你的问题,请参考以下文章

机器学习基础数学推导+纯Python实现机器学习算法17:XGBoost

Python机器学习(四十四)NumPy 数学函数

机器学习数学基础之高数篇——函数极限和导数(python版)

github 专案介绍 – Python 范例:透过互动式的 Jupyter 和数学解释流行的机器学习演算法

Python还是R语言?怎样学数学?机器学习的征程从这里开始……

数学推导+纯Python实现机器学习算法28:奇异值分解SVD