「JSOI2019」神经网络(容斥+组合计数+背包dp)

Posted cyf32768

tags:

篇首语:本文由小常识网(cha138.com)小编为大家整理,主要介绍了「JSOI2019」神经网络(容斥+组合计数+背包dp)相关的知识,希望对你有一定的参考价值。

Address

luogu5333
loj3102

Solution

容易发现,一条哈密顿回路本质上就是:把每棵树都拆成若干条有向路径,再把所有的有向路径连接成环,环上的相邻两条有向路径不可以来自同一棵树。

先求出 (g_{i,j}) 表示把第 (i) 棵树拆成 (j) 条有向路径的方案数。

考虑 ( ext{dp}),记 (f_{u,i,0/1/2/3}) 分别表示:(u) 的子树拆成 (i) 条路径,(u) 是路径起点,是路径终点,单点成路径,既不是路径起点也不是路径终点的方案数。

注意 (f_{u,i,0/1}) 不允许 (u) 单点成路径。转移随便讨论一下即可。最终 (g_{i,j}=f_{u,i,0}+f_{u,i,1}+f_{u,i,2}+f_{u,i,3})

接下来,假设我们对于所有的 (i∈[1,m]),已经确定第 (i) 棵树拆成 (a_i) 条链】路径,那么如何计算答案呢?

考虑容斥。枚举第 (i) 棵树的路径在环上被划分为至多 (b_i) 段。我们钦定第 (m) 棵树的 (1) 号节点所在的路径为环上第一条路径,那么在此条件下的方案数为:
[(prod_{i=1}^mC_{a_i-1}^{b_i-1})×(prod_{i=1}^{m-1}g_{i,a_i}×a_i!)×g_{m,a_m}×(a_m-1)!×frac{(sum_{i=1}^{m-1}b_i)!}{prod_{i=1}^{m-1}b_i!}×C_{(sum_{i=1}^nb_i)-2}^{b_m-1}]其中 (prod_{i=1}^mC_{a_i-1}^{b_i-1}) 表示把每棵树的路径划分成 (i) 段的方案数,(g_{i,a_i}×a_i!) 表示在第 (i) 棵树上选出 (a_i) 条路径形成一个排列的方案数。

如果确定了选出的路径形成的排列是哪些,划分成的 (b_i) 段分别是什么,问题就转化为:第 (i) 种颜色的球有 (b_i) 个,同种颜色的球之间没有区别,求把所有的求串成环,使得相邻两个异色的方案数。

钦定环上第一条路径相当于钦定第一个球的颜色一定为 (m),最后一个球的颜色不是 (m),然后断环为链。所以先把前 (m-1) 种颜色的球排好(方案数为),最后在中间的 ((sum b_i)-2) 个位置中选出 (b_m-1) 个位置放颜色为 (m) 的球,剩下的空位给其它的球即可。

加上容斥系数之后对答案的贡献即[(prod_{i=1}^mC_{a_i-1}^{b_i-1})×(-1)^{sum_{i=1}^ma_i-b_i}×(prod_{i=1}^{m-1}g_{i,a_i}×a_i!)×g_{m,a_m}×(a_m-1)!×frac{(sum_{i=1}^{m-1}b_i)!}{prod_{i=1}^{m-1}b_i!}×C_{(sum_{i=1}^nb_i)-2}^{b_m-1}]

可是直接枚举所有 (a_i,b_i) 的复杂度是指数级的,考虑优化。

记第 (i) 棵树的点数为 (cnt_i)。对于第 (i) 棵树((i∈[1,m-1])),枚举 (j=a_i,k=b_i),可以写出这样的一个多项式:

[sum_{j=1}^{cnt_i}g_{i,j}×i!sum_{k=1}^jC_{j-1}^{k-1}×(-1)^{j-k}×frac{x^k}{k!}]

然后我们先把这 (m-1) 个多项式相乘,再把 (x^k) 的系数乘上 (k!)。这样得到的 (x^k) 的系数 (A_k) 相当于:对于 (i∈[1,m-1]),枚举所有 (a_i,b_i) 满足 (sum_{i=1}^{m-1}b_i=k),然后把 [(prod_{i=1}^mC_{a_i-1}^{b_i-1})×(-1)^{sum_{i=1}^ma_i-b_i}×(prod_{i=1}^{m-1}g_{i,a_i}×a_i!)×frac{(sum_{i=1}^{m-1}b_i)!}{prod_{i=1}^{m-1}b_i!}] 计入 (A_k)

接下来写出第 (m) 个多项式,记 (B_k) 表示这个多项式第 (k) 项的系数:

[sum_{j=1}^{cnt_m}g_{m,j}×(j-1)!×sum_{k=1}^jC_{j-1}^{k-1}×(-1)^{j-k}×x^k]

最后枚举 (k=sum_{i=1}^{m-1}b_i),再枚举 (j=b_m),把 (A_k×B_j×C_{k+j-2}^{j-1}) 计入答案即可。

时间复杂度 (O((sum cnt_i)^2))

Code

#include <bits/stdc++.h>

using namespace std;

#define ll long long

template <class t>
inline void read(t & res)
{
    char ch;
    while (ch = getchar(), !isdigit(ch));
    res = ch ^ 48;
    while (ch = getchar(), isdigit(ch))
        res = res * 10 + (ch ^ 48);
}

const int e = 5005, o = 305, mod = 998244353;

int g[o][e], f[e][e][4], sze[e], m, n, ans, tmp[e][4], cnt, pre[e], h[e], p[o][e];
int adj[e], nxt[e << 1], go[e << 1], num, tot[o], fac[e], inv[e], a[o][e];

inline void add(int &x, int y)
{
    (x += y) >= mod && (x -= mod);
}

inline int plu(int x, int y)
{
    add(x, y);
    return x;
}

inline int mul(int x, int y)
{
    return (ll)x * y % mod;
}

inline int ksm(int x, int y)
{
    int res = 1;
    while (y)
    {
        if (y & 1) res = mul(res, x);
        y >>= 1;
        x = mul(x, x);
    }
    return res;
}

inline void link(int x, int y)
{
    nxt[++num] = adj[x]; adj[x] = num; go[num] = y;
    nxt[++num] = adj[y]; adj[y] = num; go[num] = x;
}

inline int c(int x, int y)
{
    if (x < y) return 0;
    if (x == y) return 1;
    return mul(fac[x], mul(inv[y], inv[x - y]));
}

inline void clear()
{
    int i, j, k; num = ans = 0;
    for (i = 1; i <= n; i++)
    {
        adj[i] = 0;
        for (j = 1; j <= n; j++)
            for (k = 0; k <= 3; k++)
                f[i][j][k] = 0;
    }
}

inline void dfs(int u, int pa)
{
    sze[u] = f[u][1][2] = 1;
    int i, j, k, l;
    for (i = adj[u]; i; i = nxt[i])
    {
        int v = go[i];
        if (v == pa) continue;
        dfs(v, u);
        for (j = 1; j <= sze[u] + sze[v]; j++)
            for (k = 0; k <= 3; k++)
                tmp[j][k] = f[u][j][k], f[u][j][k] = 0;
        for (j = 1; j <= sze[u]; j++)
            for (k = 1; k <= sze[v]; k++)
            {
                int s = plu(f[v][k][0], f[v][k][2]);
                add(f[u][j + k - 1][0], mul(tmp[j][2], s));
                add(f[u][j + k - 1][3], mul(tmp[j][1], s));
                
                s = plu(f[v][k][1], f[v][k][2]);
                add(f[u][j + k - 1][1], mul(tmp[j][2], s));
                add(f[u][j + k - 1][3], mul(tmp[j][0], s));
                
                s = 0;
                for (l = 0; l <= 3; l++)
                    add(s, f[v][k][l]);
                for (l = 0; l <= 3; l++)
                    add(f[u][j + k][l], mul(tmp[j][l], s));
            }
        sze[u] += sze[v];
    }
}

inline void solve(int k)
{
    read(n); clear();
    cnt += n; tot[k] = n; pre[k] = tot[k] + pre[k - 1];
    int i, x, y, j;
    for (i = 1; i < n; i++)
        read(x), read(y), link(x, y);
    dfs(1, 0);
    for (i = 1; i <= n; i++)
        for (j = 0; j <= 3; j++)
            add(g[k][i], f[1][i][j]);
}

int main()
{
    read(m);
    int i, j, k;
    for (i = 1; i <= m; i++)
        solve(i);
        
    fac[0] = 1;
    for (i = 1; i <= cnt; i++)
        fac[i] = mul(fac[i - 1], i);
    inv[cnt] = ksm(fac[cnt], mod - 2);
    for (i = cnt - 1; i >= 0; i--)
        inv[i] = mul(inv[i + 1], i + 1);
        
    for (i = 1; i < m; i++)
        for (j = 1; j <= tot[i]; j++)
            g[i][j] = mul(g[i][j], fac[j]);
        
    for (j = 1; j <= tot[m]; j++)
        g[m][j] = mul(g[m][j], fac[j - 1]);
        
    for (i = 1; i < m; i++)
        for (j = 1; j <= tot[i]; j++)
            for (k = 1; k <= j; k++)
            {
                int v = mul(g[i][j], c(j - 1, k - 1));
                v = mul(v, inv[k]);
                if ((j - k) & 1) add(p[i][k], mod - v);
                else add(p[i][k], v);
            }
    
    for (j = 1; j <= tot[m]; j++)
        for (k = 1; k <= j; k++)
        {
            int v = mul(g[m][j], c(j - 1, k - 1));
            if ((j - k) & 1) add(p[m][k], mod - v);
            else add(p[m][k], v);
        }
            
    a[0][0] = 1;
    for (i = 1; i < m; i++)
        for (j = 1; j <= pre[i]; j++)
            for (k = 1; k <= j && k <= tot[i]; k++)
                add(a[i][j], mul(a[i - 1][j - k], p[i][k]));
                
    for (i = 1; i <= pre[m - 1]; i++)
        for (j = 1; j <= tot[m]; j++)
        {
            int x = mul(a[m - 1][i], fac[i]), y = p[m][j];
            add(ans, mul(x, mul(y, c(i + j - 2, j - 1)))); 
        }
    cout << ans << endl;
    return 0;
}

以上是关于「JSOI2019」神经网络(容斥+组合计数+背包dp)的主要内容,如果未能解决你的问题,请参考以下文章

bzoj4710: [Jsoi2011]分特产 组合+容斥

BZOJ4710[Jsoi2011]分特产 组合数+容斥

Bzoj4710--Jsoi2011分特产

bzoj2839: 集合计数 容斥+组合

BZOJ2839集合计数 组合数+容斥

[CTS2019]氪金手游(容斥+树形背包DP)