BOOK数据存储—文件存储(TXTJSONCSV)
Posted kuluma
tags:
篇首语:本文由小常识网(cha138.com)小编为大家整理,主要介绍了BOOK数据存储—文件存储(TXTJSONCSV)相关的知识,希望对你有一定的参考价值。
数据存储
文本文件—TXT、JSON、CSV
关系型数据库—mysql、SQLite、Oracle、SQL Server、DB2
非关系型数据库—MongoDB、Redis
文件打开 open(),第二个参数设置文件打开方式
※ r:只读,文件指针在文件开头
※ rb:二进制只读,文件指针在文件开头
※ r+:读写方式,文件指针在文件开头
※ w:写入,如果文件已存在,则覆盖;若文件不存在,则新建
※ wb:二进制写入,如果文件已存在,则覆盖;若文件不存在,则新建
※ w+:读写,如果文件已存在,则覆盖;若文件不存在,则新建
※ a:追加方式,如果文件已存在,将内容新增再最后;若文件不存在,则新建写入
※ ab:二进制追加方式,如果文件已存在,将内容新增再最后;若文件不存在,则新建写入
※ a+:读写追加,如果文件已存在,将内容新增再最后;若文件不存在,则新建写入
一、TXT文本存储
实例:爬取知乎--热门专题页面
## 爬取知乎热门专题 import requests from pyquery import PyQuery as pq url = \'https://www.zhihu.com/special/all\' try: headers = { \'cookie\': \'miid=421313831459957575; _samesite_flag_=true; cookie2=1cd225d128b8f915414ca1d56e99dd42; t=5b4306b92a563cc96ffb9e39037350b4; _tb_token_=587ae39b3e1b8; cna=DmpEFqOo1zMCAdpqkRZ0xo79; unb=643110845; uc3=nk2=30mP%2BxQ%3D&id2=VWsrWqauorhP&lg2=U%2BGCWk%2F75gdr5Q%3D%3D&vt3=F8dBxdz4jRii0h%2Bs3pw%3D; csg=f54462ca; lgc=%5Cu5939zhi; cookie17=VWsrWqauorhP; dnk=%5Cu5939zhi; skt=906cb7efa634723b; existShop=MTU4MjI5Mjk4NQ%3D%3D; uc4=id4=0%40V8o%2FAfalcPHRLJCDGtb%2Fdp1gVzM%3D&nk4=0%403b07vSmMRqc2uEhDugyrBg%3D%3D; publishItemObj=Ng%3D%3D; tracknick=%5Cu5939zhi; _cc_=UIHiLt3xSw%3D%3D; tg=0; _l_g_=Ug%3D%3D; sg=i54; _nk_=%5Cu5939zhi; cookie1=AnPBkeBRJ7RXH1lHWy9jEkFiHPof0dsM6sKE2hraCKY%3D; enc=gTfBHQmDAXUW0nTwDZWT%2BXlVfPmDqVQdFSKTby%2BoWsATGTG4yqih%2FJwqG7BvGfl1N%2Bc1FeptT%2BWNjgCnd3%2FX9Q%3D%3D; __guid=154677242.2334981537288746500.1582292984682.7253; mt=ci=25_1; v=0; thw=cn; hng=CN%7Czh-CN%7CCNY%7C156; JSESSIONID=6A1CD727C830F88997EE7A11C795F670; uc1=cookie14=UoTUOLFGTPNtWQ%3D%3D&lng=zh_CN&cookie16=URm48syIJ1yk0MX2J7mAAEhTuw%3D%3D&existShop=false&cookie21=URm48syIYn73&tag=8&cookie15=URm48syIIVrSKA%3D%3D&pas=0; monitor_count=4; isg=BGRk121i5pgW-RJU8ZZzF7W5NWJW_Yhn96AFLn6F6C_yKQXzpgzI9-XL6IExt8C_; l=cBjv7QE7QsWpTNssBOCiNQhfh1_t7IRf6uSJcRmMi_5p21T_QV7OoWj0Ve96DjWhTFLB4IFj7TyTxeW_JsuKHdGJ4AadZ\', \'user-agent\': "Mozilla/5.0 (Windows NT 10.0; WOW64) AppleWebKit/537.36 (Khtml, like Gecko) Chrome/63.0.3239.132 Safari/537.36" } html = requests.get(url, headers=headers, timeout=30).text except: print(\'爬取失败!\') doc = pq(html) ## pyquery进行页面解析,class属性用 . 匹配 ## 调用items()得到一个生成器,for in 进行遍历 items = doc(\'.SpecialListCard.SpecialListPage-specialCard\').items() for item in items: title = item.find(\'.SpecialListCard-title\').text() intro = item.find(\'.SpecialListCard-intro\').text() with open(\'special.txt\', \'a\', encoding=\'utf-8\') as file: file.write(\'\\n\'.join([title,intro]) + \'\\n\') sections = item.find(\'.SpecialListCard-sections\').items() for section in sections: special = section.find(\'a\').text() file.write(\'\\n\'.join([special])) file.write(\'\\n\' + \'=\'*50 + \'\\n\') file.close()
运行结果:
二、JSON文件存储
JavaScript Object Notation—JavaScript对象标记
1、用对象和数组表示数据,结构化程度高
※对象—键值对 {key : value}
※数组—[‘a’, ‘b’, ’c’]
—> [{key 1: value1}, {key2 : value2}]
2、JSON库实现JSON文件的读写操作
※读取JSON
loads() 将字符串类型转换成JSON对象
import json ## JSON对象中的数据需要双引号 "" 包围 str = \'\'\' [{"name":"呱呱", "gender":"男", "age":"5"}, {"name":"嘎嘎", "gender":"女", "age":"22"} ] \'\'\' ## loads() 将字符串类型转换成JSON对象 data = json.loads(str) print(type(data)) ## <class \'list\'>,字符串类型转换成列表类型 print(data[0][\'name\']) print(data[0].get(\'name\'))
## 读取JSON文件 import json with open(\'data.json\', \'r\') as file: str = file.read() data = json.loads(str) print(data)
※输出JSON
dumps() 将JSON对象换成字符串
import json ## JSON对象中的数据需要双引号 "" 包围 data = [{"name":"呱呱", "gender":"男", "age":"5"}, {"name":"嘎嘎", "gender":"女", "age":"22"} ] ## dumps() 将JSON对象换成字符串 with open(\'data.json\', \'w\', encoding=\'utf-8\') as file: ## indent=2 保存的JSON对象自带缩进 ## ensure_ascii=False,JSON文件中包含中文 file.write(json.dumps(data, indent=2, ensure_ascii=False))
三、CSV文件存储【!!可以用excel打开!!】
Comma-Separated Values—逗号分隔值/字符分隔值
纯文本形式存储表格数据
1、 写入
import csv ## newline=\'\' ,保证每行之间没有空格 with open(\'data.csv\', \'w\', newline=\'\') as csvfile: writer = csv.writer(csvfile) ## writerow() 每行写入 writer.writerow([\'id\', \'name\', \'age\']) writer.writerow([\'1001\', \'呱呱\', \'20\']) writer.writerow([\'1002\', \'啦啦\', \'36\']) writer.writerow([\'1003\', \'哈哈\', \'14\']) ## writerows() 写入多行,效果同上 writer.writerows([[\'1004\', \'卡卡\', \'6\'],[\'1005\', \'哇哇\', \'65\']])
import csv ## 字典写入 with open(\'data1.csv\', \'w\', newline=\'\') as csvfile: fieldnames = [\'id\', \'name\', \'age\'] ## 给csv表的表头赋值 ## DictWriter初始化一个字典写入对象 writer = csv.DictWriter(csvfile, fieldnames=fieldnames) writer.writeheader() writer.writerow({\'id\':\'1001\', \'name\':\'呱呱\', \'age\':20}) writer.writerow({\'id\': \'1002\', \'name\': \'啦啦\', \'age\': 36}) writer.writerow({\'id\': \'1003\', \'name\': \'哈哈\', \'age\': 14}) ## 追加数据 with open(\'data1.csv\', \'a\', newline=\'\') as csvfile: fieldnames = [\'id\', \'name\', \'age\'] writer = csv.DictWriter(csvfile, fieldnames=fieldnames) writer.writerow({\'id\':\'1004\', \'name\':\'八八\', \'age\':20})
2、 读取
import csv with open(\'data.csv\', \'r\') as csvfile: reader = csv.reader(csvfile) for row in reader: print(row)
【实例】知乎--热门专题--存储到excel
## 爬取知乎热门专题 import requests from pyquery import PyQuery as pq import csv url = \'https://www.zhihu.com/special/all\' try: headers = { \'cookie\': \'miid=421313831459957575; _samesite_flag_=true; cookie2=1cd225d128b8f915414ca1d56e99dd42; t=5b4306b92a563cc96ffb9e39037350b4; _tb_token_=587ae39b3e1b8; cna=DmpEFqOo1zMCAdpqkRZ0xo79; unb=643110845; uc3=nk2=30mP%2BxQ%3D&id2=VWsrWqauorhP&lg2=U%2BGCWk%2F75gdr5Q%3D%3D&vt3=F8dBxdz4jRii0h%2Bs3pw%3D; csg=f54462ca; lgc=%5Cu5939zhi; cookie17=VWsrWqauorhP; dnk=%5Cu5939zhi; skt=906cb7efa634723b; existShop=MTU4MjI5Mjk4NQ%3D%3D; uc4=id4=0%40V8o%2FAfalcPHRLJCDGtb%2Fdp1gVzM%3D&nk4=0%403b07vSmMRqc2uEhDugyrBg%3D%3D; publishItemObj=Ng%3D%3D; tracknick=%5Cu5939zhi; _cc_=UIHiLt3xSw%3D%3D; tg=0; _l_g_=Ug%3D%3D; sg=i54; _nk_=%5Cu5939zhi; cookie1=AnPBkeBRJ7RXH1lHWy9jEkFiHPof0dsM6sKE2hraCKY%3D; enc=gTfBHQmDAXUW0nTwDZWT%2BXlVfPmDqVQdFSKTby%2BoWsATGTG4yqih%2FJwqG7BvGfl1N%2Bc1FeptT%2BWNjgCnd3%2FX9Q%3D%3D; __guid=154677242.2334981537288746500.1582292984682.7253; mt=ci=25_1; v=0; thw=cn; hng=CN%7Czh-CN%7CCNY%7C156; JSESSIONID=6A1CD727C830F88997EE7A11C795F670; uc1=cookie14=UoTUOLFGTPNtWQ%3D%3D&lng=zh_CN&cookie16=URm48syIJ1yk0MX2J7mAAEhTuw%3D%3D&existShop=false&cookie21=URm48syIYn73&tag=8&cookie15=URm48syIIVrSKA%3D%3D&pas=0; monitor_count=4; isg=BGRk121i5pgW-RJU8ZZzF7W5NWJW_Yhn96AFLn6F6C_yKQXzpgzI9-XL6IExt8C_; l=cBjv7QE7QsWpTNssBOCiNQhfh1_t7IRf6uSJcRmMi_5p21T_QV7OoWj0Ve96DjWhTFLB4IFj7TyTxeW_JsuKHdGJ4AadZ\', \'user-agent\': "Mozilla/5.0 (Windows NT 10.0; WOW64) AppleWebKit/537.36 (KHTML, like Gecko) Chrome/63.0.3239.132 Safari/537.36" } html = requests.get(url, headers=headers, timeout=30).text except: print(\'爬取失败!\') doc = pq(html) ## pyquery进行页面解析,class属性用 . 匹配 ## 调用items()得到一个生成器,for in 进行遍历 with open(\'data1.csv\', \'a\', newline=\'\') as csvfile: header = [\'专题标题\', \'说明\', \'子专题\'] writer = csv.DictWriter(csvfile, fieldnames=header) writer.writeheader() items = doc(\'.SpecialListCard.SpecialListPage-specialCard\').items() for item in items: title = item.find(\'.SpecialListCard-title\').text() intro = item.find(\'.SpecialListCard-intro\').text() sections = item.find(\'.SpecialListCard-sections\').items() for section in sections: special = section.find(\'a\').text() writer.writerow({\'专题标题\': title, \'说明\': intro, \'子专题\': special}) csvfile.close()
运行结果:
以上是关于BOOK数据存储—文件存储(TXTJSONCSV)的主要内容,如果未能解决你的问题,请参考以下文章