JavaScript 浮点数陷阱以及解法
Posted Bricks
tags:
篇首语:本文由小常识网(cha138.com)小编为大家整理,主要介绍了JavaScript 浮点数陷阱以及解法相关的知识,希望对你有一定的参考价值。
javascript 浮点数陷阱以及解法
参考winter大大重学前端 0.1 + 0.2 为什么不等于 0.3 ?
众所周知,JavaScript浮点数计算经常会遇到 0.000000001 和 0.999999999 这样奇怪的结果,如 0.1 + 0.2 = 0.30000000000000004, 1-0.9=0.09999999999999998 ,很多人都知道这是浮点数误差的问题,但具体的原因就不说了。本文帮你梳理背后的原理以及解决方案,还会向你解释JS中的大数危机以及四则运算里面会遇到的坑。
浮点数的存储
首先要搞清楚 JavaScript 如何存储小数。和其他语言如Java 和 Python 不同,JavaScript 中所有的数字包括 整数 和 小数 都只有一种类型 —— Number。它的实现遵循 IEEE 754 标准,使用 64 位固定长度来表示,也就是标准的 double 双精度浮点数。(相关的还有 float 32 位单精度)。计算机组成原理中有详细的介绍,如果你不记得也没有关系。
注:大多数语言中的小数默认都是遵循 IEEE 754 的 float 浮点数,包括 Java、Ruby、Python,本文中的浮点数问题依然存在。
这样的存储结构优点是可以归一化处理整数和小数,节省存储空间。
64位比特又可以分为三个部分。
- 符号位S:第1位是正负数符号位(sign),0代表整数,1代表负数
- 指数为E:中间的11位存储指数(exponent),用来表示次方数
- 尾数位M: 最后的52位是尾数(mantissa)超出的部分自动进一舍零
实际数字就可以用以下公式来计算:
注意以上的公式遵循科学计数法的规范,在十进制中 0<M<10,到二进制就是 0<M<2。也就是说整数部分只能是1,所以可以被舍去,只保留后面的小数部分。如 4.5 转成二进制就是 100.1,科学计数法表示是 1.001*2^2,舍去1后 M = 001。E是一个无符号整数,因为长度是11位,取值范围是 0~2047。但是科学计数法中的指数是可以为负数的,所以约定减去一个中间数 1023,[0,1022] 表示为负,[1024,2047] 表示为正。如 4.5 的指数 E = 1025,尾数 M = 001。
最终的公式变成:
所以 4.5
最终表示为(M=001、E=1025):
下面再以 0.1
为例解释浮点误差的原因,0.1
转成二进制表示为 0.0001100110011001100
(1100循环),1.100110011001100x2^-4
,所以 E=-4+1023=1019
;M 舍去首位的1,得到 100110011...
。最终就是:
转化成十进制后为 0.100000000000000005551115123126
,因此就出现了浮点误差。
为什么 0.1+0.2=0.30000000000000004
?
计算步骤为:
// 0.1 和 0.2 都转化成二进制后再进行运算
0.00011001100110011001100110011001100110011001100110011010 +
0.0011001100110011001100110011001100110011001100110011010 =
0.0100110011001100110011001100110011001100110011001100111
// 转成十进制正好是 0.30000000000000004
为什么 x=0.1
能得到 0.1
?
恭喜你到了看山不是山的境界。因为 mantissa 固定长度是 52 位,再加上省略的一位,最多可以表示的数是 2^53=9007199254740992
,对应科学计数尾数是 9.007199254740992
,这也是 JS 最多能表示的精度。它的长度是 16,所以可以近似使用 toPrecision(16)
来做精度运算,超过的精度会自动做凑整处理。于是就有:
0.10000000000000000555.toPrecision(16)
// 返回 0.1000000000000000,去掉末尾的零后正好为 0.1
// 但你看到的 `0.1` 实际上并不是 `0.1`。不信你可用更高的精度试试:
0.1.toPrecision(21) = 0.100000000000000005551
大数危机
可能你已经隐约感觉到了,如果整数大于 9007199254740992 会出现什么情况呢?
由于 E 最大值是 1023,所以最大可以表示的整数是 2^1024 - 1
,这就是能表示的最大整数。但你并不能这样计算这个数字,因为从 2^1024
开始就变成了 Infinity
> Math.pow(2, 1023)
8.98846567431158e+307
> Math.pow(2, 1024)
Infinity
那么对于 (2^53, 2^63)
之间的数会出现什么情况呢?
(2^53, 2^54)
之间的数会两个选一个,只能精确表示偶数(2^54, 2^55)
之间的数会四个选一个,只能精确表示4个倍数- ... 依次跳过更多2的倍数
下面这张图能很好的表示 JavaScript 中浮点数和实数(Real Number)之间的对应关系。我们常用的 (-2^53, 2^53)
只是最中间非常小的一部分,越往两边越稀疏越不精确。
在淘宝早期的订单系统中把订单号当作数字处理,后来随意订单号暴增,已经超过了
9007199254740992
,最终的解法是把订单号改成字符串处理。
要想解决大数的问题你可以引用第三方库 bignumber.js,原理是把所有数字当作字符串,重新实现了计算逻辑,缺点是性能比原生的差很多,所以原生支持大数就很有必要了。TC39 已经有一个 Stage 3 的提案 proposal bigint,大数问题有望彻底解决。在浏览器正式支持前,可以使用 Babel 7.0 来实现,它的内部是自动转换成 big-integer 来计算,这样能保持精度但运算效率会降低。
toPrecision
vs toFixed
数据处理时,这两个函数很容易混淆。它们的共同点是把数字转成字符串供展示使用。注意在计算的中间过程不要使用,只用于最终结果。
不同点就需要注意一下:
toPrecision
是处理精度,精度是从左至右第一个不为0的数开始数起。toFixed
是小数点后指定位数取整,从小数点开始数起。
两者都能对多余数字做凑整处理,也有些人用 toFixed
来做四舍五入,但一定要知道它是有 Bug 的。
如:1.005.toFixed(2)
返回的是 1.00
而不是 1.01
。
原因: 1.005
实际对应的数字是 1.00499999999999989
,在四舍五入时全部被舍去!
解法:使用四舍五入函数 Math.round()
来处理。但 Math.round(1.005 * 100) / 100
还是不行,因为 1.005 * 100 = 100.49999999999999
。还需要把乘法和除法精度误差都解决后再使用 Math.round
。可以使用后面介绍的 number-precision#round
方法来解决。
解决方案
回到最关心的问题:如何解决浮点误差。首先,理论上用有限的空间来存储无限的小数是不可能保证精确的,但我们可以处理一下得到我们期望的结果。
数据展示类
当你拿到 1.4000000000000001
这样的数据要展示时,建议使用 toPrecision
凑整并 parseFloat
转成数字后再显示,如下:
parseFloat(1.4000000000000001.toPrecision(12)) === 1.4 // True
封装成方法就是:
function strip(num, precision = 12) {
return +parseFloat(num.toPrecision(precision));
}
为什么选择 12
做为默认精度?这是一个经验的选择,一般选12就能解决掉大部分0001和0009问题,而且大部分情况下也够用了,如果你需要更精确可以调高。
数据运算类
对于运算类操作,如 +-*/
,就不能使用 toPrecision
了。正确的做法是把小数转成整数后再运算。以加法为例:
/**
* 精确加法
*/
function add(num1, num2) {
const num1Digits = (num1.toString().split(‘.‘)[1] || ‘‘).length;
const num2Digits = (num2.toString().split(‘.‘)[1] || ‘‘).length;
const baseNum = Math.pow(10, Math.max(num1Digits, num2Digits));
return (num1 * baseNum + num2 * baseNum) / baseNum;
}
以上方法能适用于大部分场景。遇到科学计数法如 2.3e+1
(当数字精度大于21时,数字会强制转为科学计数法形式显示)时还需要特别处理一下。
能读到这里,说明你非常有耐心,那我就放个福利吧。遇到浮点数误差问题时可以直接使用
https://github.com/dt-fe/number-precision
完美支持浮点数的加减乘除、四舍五入等运算。非常小只有1K,远小于绝大多数同类库(如Math.js、BigDecimal.js),100%测试全覆盖,代码可读性强,不妨在你的应用里用起来!
参考
- Double-precision floating-point format
- What Every Programmer Should Know About Floating-Point Arithmetic
- Why Computers are Bad at Algebra | Infinite Series
- [Is Your Model Susceptible to Floating-Point Errors?](
以上是关于JavaScript 浮点数陷阱以及解法的主要内容,如果未能解决你的问题,请参考以下文章
原生JavaScript判断是否为邮箱危险字符验证长度验证网址验证小数整数浮点数等常用的验证
浮点数的陷阱--double i != 10 基本都是对的,不管怎么赋值