在用SPSS做一个线性回归分析,结果如图,R方很低,但是显著性都还可以。问题是这个模型预测效果很差。
Posted
tags:
篇首语:本文由小常识网(cha138.com)小编为大家整理,主要介绍了在用SPSS做一个线性回归分析,结果如图,R方很低,但是显著性都还可以。问题是这个模型预测效果很差。相关的知识,希望对你有一定的参考价值。
参考技术A用户可以先试着画一个散点图,看看是否可以使用其他曲线来获得更好的拟合效果,在很多情况下,对数据进行线性或某些非线性拟合会有显著的效果,但可能不是最好的,所以有必要判断自变量与因变量之间是否呈线性关系。
R方和调整后的R方是对模型拟合效果的描述,调整后的R方更准确,即自变量对因变量的解释率为27.8%,T为各自变量是否有显著影响的检验,具体的显著性仍然取决于随后的P值,如果p值< 0.05,则自变量影响显著。
扩展资料:
注意事项:
多元线性回归的基本原理和基本计算过程与一元线性回归相同。但由于自变量较多,计算比较麻烦。在实际应用中,一般需要统计软件。这里只介绍了多元线性回归的基本问题。
但由于每个独立变量单位可能不同,如消费水平之间的关系、工资水平、教育水平、职业、地区、家庭负担,等等因素会影响消费水平,而这些影响因素(自变量)单位显然是不同的,所以独立变量系数的大小并不意味着之前的因素重要程度。
简单地说,相同工资收入以元计算的回归系数小于以百元计算的回归系数。然而,工资水平对消费的影响并没有改变。因此,有必要寻找一种方法将自变量积分为统一单位。我们之前学过的标准分数有这个功能。
首先将所有变量包括因变量转化为标准分数,然后进行线性回归。在这种情况下,得到的回归系数可以反映相应自变量的重要性。
志愿填报工具
智能填报
¥198
志愿填报一对一
在线专业老师一对一
¥1980
志愿填报一对一
专业老师面对面一对一
¥6980
艺术生志愿填报一对一
在线专业老师一对一
¥3680
查
看
更
多
spss回归分析结果解读
请问spss回归分析数据都是怎么看的,谢谢!
以payout(现金股利支付率)为自变
ROA
第一步:首先对模型整体情况进行分析
包括模型拟合情况(R²),是否通过F检验等。
第二步:分析X的显著性
分析X的显著性(P值),如果呈现出显著性,则说明X对Y有影响关系。如果不显著,则应剔除该变量。
第三步:判断X对Y的影响关系方向及影响程度
结合回归系数B值,对比分析X对Y的影响程度。B值为正数则说明X对Y有正向影响,为负数则说明有负向影响。
第四步:写出模型公式
第五步:对分析进行总结
SPSSAU也会提供智能分析建议,方便分析人员快速得出分析结果。
参考技术A 说明一下各个符号,constant的意思是常量,实际上就是回归方程的截距,也就是自变量为0时因变量的取值,如果你的方程是标准化的,且因变量是正态分布的,那么常量会变成0,也就是没有截距。B也就是beta,代表回归系数,标准化的回归系数代表自变量也就是预测变量和因变量的相关,为什么要标准化,因为标准化的时候各个自变量以及因变量的单位才能统一,使结果更精确,减少因为单位不同而造成的误差。T值就是对回归系数的t检验的结果,绝对值越大,sig就越小,sig代表t检验的显著性,在统计学上,sig<0.05一般被认为是系数检验显著,显著的意思就是你的回归系数的绝对值显著大于0,表明自变量可以有效预测因变量的变异,做出这个结论你有5%的可能会犯错误,即有95%的把握结论正确。回归的检验首先看anova那个表,也就是F检验,那个表代表的是对你进行回归的所有自变量的回归系数的一个总体检验,如果sig<0.05,说明至少有一个自变量能够有效预测因变量,这个在写数据分析结果时一般可以不报告
然后看系数表,看标准化的回归系数是否显著,每个自变量都有一个对应的回归系数以及显著性检验
最后看模型汇总那个表,R方叫做决定系数,他是自变量可以解释的变异量占因变量总变异量的比例,代表回归方程对因变量的解释程度,报告的时候报告调整后的R方,这个值是针对自变量的增多会不断增强预测力的一个矫正(因为即使没什么用的自变量,只要多增几个,R方也会变大,调整后的R方是对较多自变量的惩罚),R可以不用管,标准化的情况下R也是自变量和因变量的相关
标准误表示由于抽样误差所导致的实际值和回归估计值的偏差大小,标准误越小,回归线的代表性越强
希望对您有用 参考技术B R=0.641,说明拟合效果还行,其概率小于0.05,说明方程系数不全为零;各个自变量sig.小于0.05的说明自变量对因变量有显著影响,影响正负你要看系数正负;相反,各个自变量sig.大于0.05的说明自变量对因变量无显著影响。追问
那请问那个F值表示了什么意思?
追答F值表示什么不用理他,关键看F检验的sig.的大小,跟之前说的一样,概率小于0.05,说明方程系数不全为零。注意这里的系数不是一个变量的系数,是方程中所以变量的系数。不用看F值。
以上是关于在用SPSS做一个线性回归分析,结果如图,R方很低,但是显著性都还可以。问题是这个模型预测效果很差。的主要内容,如果未能解决你的问题,请参考以下文章