[JSOI2008]球形空间产生器

Posted $mathfr

tags:

篇首语:本文由小常识网(cha138.com)小编为大家整理,主要介绍了[JSOI2008]球形空间产生器相关的知识,希望对你有一定的参考价值。

嘟嘟嘟


由题意可知,我们要求一个(n)元组((x_1, x_2, x_3, dots, x_n)),满足
[sum _ {j = 1} ^ {n} (a_{ij} - x_j) ^ 2 = r ^ 2]
对于(forall i in [1, n])都成立。
这个式子说白了就是一个(n)元二次方程组,很显然我(们)不会。但是我们会(n)元线性方程组啊,能不能转化一下?
答案是能的。
很简单,只要相邻两个方程组作差就行了,这样就会把({x_j} ^ 2)这一项消掉。
然后套上高斯消元板子即可。
需要注意的是,新的方程组每一个方程中(x_j)的系数只有(2 * (a_{i + 1, j} - a_{ij})),剩下的都应该移到等式右侧累加到常数项,同时别忘了变号。

#include<cstdio>
#include<iostream>
#include<cmath>
#include<algorithm>
#include<cstring>
#include<cstdlib>
#include<cctype>
#include<vector>
#include<stack>
#include<queue>
using namespace std;
#define enter puts("") 
#define space putchar(‘ ‘)
#define Mem(a, x) memset(a, x, sizeof(a))
#define rg register
typedef long long ll;
typedef double db;
const int INF = 0x3f3f3f3f;
const db eps = 1e-8;
const int maxn = 15;
inline ll read()
{
    ll ans = 0;
    char ch = getchar(), last = ‘ ‘;
    while(!isdigit(ch)) {last = ch; ch = getchar();}
    while(isdigit(ch)) {ans = (ans << 1) + (ans << 3) + ch - ‘0‘; ch = getchar();}
    if(last == ‘-‘) ans = -ans;
    return ans;
}
inline void write(ll x)
{
    if(x < 0) x = -x, putchar(‘-‘);
    if(x >= 10) write(x / 10);
    putchar(x % 10 + ‘0‘);
}

int n;
db a[maxn][maxn], f[maxn][maxn], ans[maxn];

int main()
{
    n = read();
    for(int i = 1; i <= n + 1; ++i)
        for(int j = 1; j <= n; ++j) scanf("%lf", &a[i][j]);
    for(int i = 1; i <= n; ++i)
        for(int j = 1; j <= n; ++j)
        {
            f[i][j] = 2.0 * (a[i][j] - a[i + 1][j]);
            f[i][n + 1] += a[i][j] * a[i][j] - a[i + 1][j] * a[i + 1][j];
        }
    for(int i = 1; i <= n; ++i)
    {
        int pos = i;
        for(int j = i + 1; j <= n; ++j)
            if(fabs(f[j][i]) > fabs(f[pos][i])) pos = j;
        if(pos != i) swap(f[i], f[pos]);
        db tp = f[i][i];
        if(fabs(tp) > eps) for(int j = i; j <= n + 1; ++j) f[i][j] /= tp;
        for(int j = i + 1; j <= n; ++j)
        {
            db tp = f[j][i];
            for(int k = i; k <= n + 1; ++k) f[j][k] -= f[i][k] * tp;
        }
    }
    for(int i = n; i; --i)  //回代 
    {
        ans[i] = f[i][n + 1];
        for(int j = i - 1; j; --j) f[j][n + 1] -= f[i][n + 1] * f[j][i];
    }
    for(int i = 1; i <= n; ++i) printf("%.3lf ", ans[i]); enter;
    return 0;
}










以上是关于[JSOI2008]球形空间产生器的主要内容,如果未能解决你的问题,请参考以下文章

JSOI2008球形空间产生器

[JSOI2008]球形空间产生器

[BZOJ 1013][JSOI2008]球形空间产生器sphere

BZOJ 1013: [JSOI2008]球形空间产生器sphere

BZOJ1013: [JSOI2008]球形空间产生器sphere

BZOJ 1013: [JSOI2008]球形空间产生器sphere