ChatGPT做爬虫的第一步
Posted 牙叔教程
tags:
篇首语:本文由小常识网(cha138.com)小编为大家整理,主要介绍了ChatGPT做爬虫的第一步相关的知识,希望对你有一定的参考价值。
做爬虫就是搞数据, 专业的人做专业的事, ChatGPT阅虫无数, 搞个小爬虫, So Easy!
我知道可以百度到下载图片的代码, 但是我不想百度了, 一切交给ChatGPT
你只需要问他: 怎么用Nodejs下载图片?
其中,url是图片的地址,filePath是保存图片的本地路径。使用https模块发送GET请求获取图片,然后使用fs模块创建可写流并将图片写入本地文件。
它在代码后面还带上了注释, 你问其他人能享受到这个待遇吗?
代码我测试过了, 正常可用.
界面怎么这么素
因为ChatGPT老要登录, 登录太麻烦了, 所以就写了个非常简单的网页, 直接调用ChatGPT的API; 如果你要我写的网页, 公众号回复 api网页
自己写, 自己用, 比较放心, 不用担心泄露apiKey;
别人的网页, 别人的app, 把你的号整封了咋弄?
函数封装
这是我自己封装的函数
function downloadImg(imgUrl) let url = "https://xxx.xxx"; const filePath = "image.jpg"; https.get(imgUrl, (res) => res.pipe(fs.createWriteStream(filePath)); console.log("下载完成"); );
这个用的是http回调, 不好使, 我就让ChatGPT给我改成await的那种
口令是: 把上面的下载图片代码, 改成await的形式
你只需要说一句话,
你想到的, 你没想到的, 都给你整的明明白白的, 小小爬虫第一步, 走的稳稳当当
还用的着百度?
大可不必
用不了GPT怎么办?
可以用 谷歌的Bard
也可以用 微软的NewBing
C#开发学习人工智能的第一步
脚本之家
你与百万开发者在一起
作者 | kiba518
出品 | 脚本之家(ID:jb51net)
作为一个软件开发者,我们除了要学会复制,黏贴,还要学会调用API和优秀的开源类库。
也许有人说C#做不了人工智能,如果你认可这种想法,那说明你的思想还是狭隘的。
做不了人工智能的不是C#这种语言,而是你,我这种普通的程序员。
做人工智能需要一定的学历背景,一定的数学基础和公司专项的资源供给;而这种机缘小之又小,你我既然是普通的程序员,就必然与此无缘。
但在人工智能如日中天的当下,接触深度学习是必然会发生的事情,所以我们要做的就是,学会调用相关的类库。
现在,让我们迈出C#学习人工智能的第一步,通过调用Affdex来锁定图片中人物的面部,然后将其截取出来。
首先,我们需要先访问官网下载Affdex的Sdk。
在官网找中找到下载Affdex的Sdk的地方也是个挺困难的事。。。所以下载链接如下:
进入网页后,向下拉动滚动条,找到到下图所示位置,点击Download进行下载。
下载完成后得到Sdk,如下图:
下面,我们双击进行安装,不过安装SDK有一些限制,需要预先安装NET Framework4.0和C++ 2015。如果电脑里已经安装了,就不必担心了;如果安装的是C++2015-2017这类型的,则需要卸载了,重新安装C++2015的版本,否则Affdex的SDK将安装失败。
安装完成后,我们去安装目录找到Affdex.dll,affdex-native.dll,tensorflow.dll三个文件,如下图:
我们先将它们复制出来,等待使用。
简单的介绍一下,这三个类库中,Affdex.dll是可以被C#项目直接引用的,而另外两个文件是Affdex.dll的依赖文件;也就是说,affdex-native.dll,tensorflow.dll需要在生成时,输出到运行目录下。
有经验的朋友想必已经发现了,这里有个类库名叫tensorflow.dll,tensorflow是什么啊?稍微百度一下大家就会了解了,它是专门来做深度学习的。
也就是说Affdex是支持深度学习的。
----------------------------------------------------------------------------------------------------
现在我们来学习Affdex的使用。
首先我们新建一个WPF项目,然后引用Affdex.dll。
然后将项目的运行平台设置为64位,因为,这样处理图片的速度能快一点,如下图:
在Affdex中我们可以发现四个探头—VideoDetector,PhotoDetector,FrameDetector,CameraDetector。
在这里我们要处理的是图片,所以我们选择PhotoDetector,下面我们创建一个PhotoWindow.Xaml页面来使用PhotoDetector处理图片。
首先,我们定义一个PhotoDetector的属性,用于处理图片。
然后我们在构造函数中对他进行实例化,代码如下:
private Affdex.PhotoDetector Detector { get; set; }
public PhotoWindow()
{
InitializeComponent();
uint maxNumFaces = 1;//最多识别图片中几张脸
Detector = new Affdex.PhotoDetector(maxNumFaces, Affdex.FaceDetectorMode.SMALL_FACES);
Detector.setImageListener(this);
Detector.setProcessStatusListener(this);
Detector.start();
}
在上述代码中可以看到,除了初始化PhotoDetector,我们还做了一个图片监听设置setImageListener,那么图片监听是干什么的呢?
很简单,图片被PhotoDetector处理完,我们需要知道图片处理结果呀,而这个图片监听正是是用来返回图片处理结果的。
可以看到图片监听设置的入参是this,也就是说,需要把图片的处理结果返回给当前页面。
如果就这样写是会编译报错的,会提示setImageListener的入参错误。
我们查看setImageListener的入参,发现它的入参是一个ImageListener接口,即,setImageListener的入参是一个要实现了ImageListener接口的类。
到这里,我们就都明白了,现在我们让当前PhotoWindow.xaml窗体继承接口ImageListener,并实现接口ImageListener内的方法。
public partial class PhotoWindow : Window, Affdex.ImageListener
===========================================================================
public void onImageCapture(Affdex.Frame frame)
{
}
public void onImageResults(Dictionary<int, Face> faces, Affdex.Frame frame)
{
}
如上述代码所示,在我们实现的接口onImageResults里有两个参数:faces、frame。
其中faces是最重要的,这里包含Affdex分析图片的结果。
----------------------------------------------------------------------------------------------------
现在,Affdex的配置代码已经写完了,我们可以把图片读取出来调用Affdex处理了。
public PhotoWindow()
{
InitializeComponent();
uint maxNumFaces = 1;//最多识别图片中几张脸
Detector = new Affdex.PhotoDetector(maxNumFaces, Affdex.FaceDetectorMode.SMALL_FACES);
Detector.setImageListener(this);
Detector.start();
byte[] bytes = FileHelper.FileToBytes(System.IO.Path.Combine(System.AppDomain.CurrentDomain.BaseDirectory, "timg.jpg"));
BitmapSource bitmapSource = ImageHelper.BytesToBitmapImage(bytes);
var w = bitmapSource.Width;
var h = bitmapSource.Height;
var stride = bitmapSource.Format.BitsPerPixel * (int)w / 8; //计算Stride
byte[] byteList = new byte[(int)h * stride];
bitmapSource.CopyPixels(byteList, stride, 0);
Affdex.Frame frame = new Affdex.Frame((int)w, (int)h, byteList, Affdex.Frame.COLOR_FORMAT.BGRA);
Detector.process(frame);
}
如上述代码所示,我们在启动了Detector后,读取了一个人物图片,然后把人物图片的像素数组解析出来,生成一个Frame;这个Frame是Affdex的类,用于保存图像数据信息。
最后,我们把生成的Frame对象,扔给Detecotor的Process方法处理。
Detecotor处理完成后,会触发onImageResults方法。
在onImageResults方法里,入参faces包含了处理结果。
现在我们使用faces里的内容,来定位图片中人物面部的位置。
public void onImageResults(Dictionary<int, Face> faces, Affdex.Frame frame)
{
Face face = null;
if (faces != null && faces.Values != null && faces.Values.Count() > 0)
{
face = faces.Values.First();//因为我们的Detector只识别了一个脸,所以这里最多只有一个数据
}
int top = (int)face.FeaturePoints.Min(r => r.X);
int left = (int)face.FeaturePoints.Min(r => r.Y);
int bottom = (int)face.FeaturePoints.Max(r => r.X);
int right = (int)face.FeaturePoints.Max(r => r.Y);
ImageHelper.cutPicture(System.IO.Path.Combine(System.AppDomain.CurrentDomain.BaseDirectory, "timg.jpg"),
left, top, right , bottom - top);
}
如上述代码所示,我们在onImageResults里做了【最简单】人物面部坐标定位,并进行了剪切。
处理结果如下图所示:
事实上,上面介绍的只是Affdex最基础调用,而且,这里并没有使用到深度学习的内容,只是简单的扫描和分析。
想要使用深度学习的内容还需要进一步学习该开源控件,不过,万事开头难,我们现在已经迈出了第一步。
----------------------------------------------------------------------------------------------------
到此C#开发学习人工智能的第一步就完成了。
代码已经传到Github上了,欢迎大家下载。
声明:本文为 脚本之家专栏作者 投稿,未经允许请勿转载。
写的不错?赞赏一下
长按扫码赞赏我
●
●
●
●
●
以上是关于ChatGPT做爬虫的第一步的主要内容,如果未能解决你的问题,请参考以下文章