基础索引

Posted 就是不倒翁

tags:

篇首语:本文由小常识网(cha138.com)小编为大家整理,主要介绍了基础索引相关的知识,希望对你有一定的参考价值。

索引目的:

  • 快速的查找我们的数据

索引的优势和劣势

  • 优势

    • 类似于书籍的目录索引,提高数据检索的效率,降低数据库的io成本

    • 通过索引列对数据进行排序,降低数据排序的成本,降低CPU的消耗

  • 劣势

    • 实际上索引也是一张表,该表中保存了主键与索引字段,并指向实体类的记录,所以索引列也是要占用空间的

    • 虽然索引大大提高了查询效率,同时却也降低更新表的速度,如对表进行INSERT,UPDATE,DELETE。因为更新表时,mysql不仅要保存数据,还需保存一下索引文件每次更新添加了索引列的字段,都会调整因为更新所带来的简直变化后的索引信息

索引的结构

  • 索引在mysql的存储引擎中实现的,而不是在服务器层实现的,所以每种存储引擎的索引都不一定完全相同,也不是所有的存储引擎都支持所有的索引类型的。mysql目前提供了以下4种索引

  • BTree 索引:最常见的索引类型,大部分索引都支持B树索引

  • HASH索引:只有Memory引擎支持,使用场景简单

  • R Tree索引(空间索引):空间索引是MyISAM引擎的一个特殊索引类型,主要用于地理空间数据类型,通常使用较少,不做特别介绍

  • Full-text(全文索引):全文索引也是MyISAM的一个特殊索引类型,主要用于全文索引,InnoDB从Mysql5.6版本开始支持全文索引

 

  • 我们平常所说的索引,如果没有特别指明,都是指B+树(多路搜索树,并不一定是二叉的)结构组织的索引,其中聚集索引,复合索引,前缀索引,唯一索引默认都是使用B+树索引,统称为索引

BTree结构

  • Btree又叫多路平衡搜索树,一颗m叉的BTree特性如下:

    • 树中每个节点最多包含m个孩子

    • 除根节点与叶子节点外,每个节点至少又【cell(m/2)-1】个孩子

    • 若根节点不是叶子节点,则至少有两个孩子

    • 所有的叶子节点都在同一层

    • 每个非叶子节点由n个key与n+1个指针组成,其中【cell(m/2)-1】<=n<=m-1

 

B+Tree结构

  • B+Tree为BTree的变种,B+Tree与BTree的区别为

    • n叉B+Tree最多包含有N个key,而BTree最多包含有n-1个key

    • B+Tree的叶子节点保存所有的key的信息,依key大小顺序排序

    • 所有的非叶子节点都可以看作是key的索引部分

  • 由于B+Tree只有叶子节点保存key信息,查询任何key都要从root走到叶子,所以B+Tree的查询效率更加稳定

 

Mysql中的B+Tree

  • mysql索引数据结构对经典的B+Tree进行了优化,在原B+Tree的基础上,增加一个指向相邻叶子节点的链表指针,就形成了带有顺序指针的B+Tree,提高区间访问的性能

  • Mysql中的B+Tree索引结构示意图:

  •  

索引的分类:

  • 单列索引:即一个索引只包含单个列,一个表可以有多个单列索引

  • 唯一索引:索引列的值必须是唯一的,可以空值

  • 复合索引:一个索引包含多个列

索引的语法:

创建索引:

  • 不写索引类型,默认都是BTree类型

 create index 索引名 on 表名(字段名);

查询索引:

show index from 表名

删除索引:

drop index from 索引名 on 表名

ALTER命令:

创建唯一索引
alter table 表名 add unique 表名(字段)
普通索引
alter table 表名 add index 表名(字段)
全文索引
alter table 表名 add fulltext 表名(字段)

索引设计原则:

索引的设计可以遵循一些已有的原则,创建索引的时候尽量考虑符合这些原则,使用提升索引的使用效率,更高效的使用索引。

  • 对查询频繁次较高,且数量比较大的表建立索引

  • 索引字段的选择,最佳候选列应当从where子句的条件中提取,如果where子句中的组合比较多,那么应当挑选最常用,过滤效果最好的列的组合

  • 使用唯一索引,区分度越高,使用索引的效率越高

  • 索引可以有效的提升查询数据的效率,但索引数量不是多多益善,索引越多,维护索引的代价自然也就水涨船高,对于插入,更新,删除等DML操作比较频繁的表来说,索引过多,就引入相当高的维护代价,降低DML操作的效率,增加相应操作的时间消耗,另外索引过多的话,MYSQL也会犯选择困难病,虽然最终仍然会找到一个可用的索引,但无疑提高了选择的代价

  • 使用短索引,索引创建之后也是使用硬盘来存储的,因此提升索引访问的io效率,也可以提升总体的访问效率,假如构成索引的字段总长度比较短,那么在给定大小的存储块内可以存储更多的索引值,相应的可以有效的提升mysql访问索引的io效率

  • 利用最左前缀,N个列组合而成的组合索引,南无相当于是创建了N个索引,如何查询时where子句中使用了组成该索引的前几个字段,南无这条查询sql可以利用组合索引来提升查询效率

什么是索引? 有什么用?

  • 索引就相当于一本书目录,通过目录可以快速的找到对应的资源

在数据库方面,查询一张表的时候,有两种检索方式:

  • 第一种方式:全表扫描

  • 第二种方式:根据索引检索(效率很高)

索引为什么可以提高检索效率呢?

  • 其实最根本的原理是缩小了扫描范围

索引虽然可以提高检索效率,但是不能随意的添加索引,因为索引也是根据数据库当中的对象,也需要数据库不断的维护,是有维护成本的。比如,表中的数据经常被修改这样就不适合添加索引,因为数据一旦修改,索引需要重新排序,进行维护

添加索引是给某一个字段,或者所某些字段添加索引。

select ename,sal from emo where ename = `SMITH`;
  • 当ename字段上没有添加索引的时候,以上sql语句会进行全表扫描,扫描ename字段中所有的值

  • 当ename字段上添加索引的时候,以上sql语句会根据索引扫描,扫描ename字段中所有的值

怎么创建索引对象?怎么删除索引对象?

  • 创建索引对象:

    • create index 索引名称 on 表名(字段名);

  • 删除索引对象:

    • drop index 索引名称 on 表名;

什么时候考虑给字段添加索引?(满足什么条件)

  • 数据量庞大(根据客户的需求,根据线上的环境)

  • 该字段很少的DML操作(因为字段进行修改操作,索引也需要维护)

  • 该字段经常出现在where子句中。(经常根据那个字段查询)

注意:主键和具有unique约束的字段自动会添加索引

  • 根据主键查询效率较高,尽量根据主键检索

查看sql语句的执行计划:

  • 查看这个字段下有没有索引

explain select ename,sal from emp where sal = 5000;

给薪资sal字段添加索引:

create index emp_sal_index on emp(sal);

给薪资sql字段删除索引:

drop index emp_sql_index on emp;

索引底层采用的数据结构是:B+Tree

索引的实现原理?

  • 通过B Tree缩小扫描范围,底层索引进行了排序,分区,索引会携带数据在表中的物理地址 ,最终通过索引检索到数据之后,获取到的物理地址,通过物理地址定位表中的数据,效率是最高的。

  • 本来是:

    • select ename from emp where ename = ‘SMITH’;

  • 通过索引转换为:

    • select ename from emp where 物理地址 = 0x3;

索引的分类:

  • 单一索引:给单个字段添加索引

  • 复合索引:给多个字段联合起来添加1个索引

  • 主键索引:主键上会自动添加索引

  • 唯一索引:有unique约束的字段上会自动添加索引

索引什么时候失效?

  • 模糊查询的时候,第一个通配符使用的是%,这个时候索引是失效的

mongodb基础学习5

  下面来看看索引,有btree索引和hash索引,会提高查询速度,但降低了写入速度,可以按升,降序建立

  包括单列索引,多列索引,子文档索引,也可分为普通索引,惟一索引,稀疏索引,hash索引(2.4新增)

  无索引的情况

技术分享图片

  建立单一索引

技术分享图片

  获取当前索引

技术分享图片

  删除一个索引

技术分享图片

  删除所有索引(_id索引不会被删除)

技术分享图片

  创建多列索引

技术分享图片

  通过子文档属性查询对象

技术分享图片

  创建子文档索引

技术分享图片

  创建惟一索引

技术分享图片

  创建稀疏索引,对于稀疏索引的列,如果该列不存在,则查不到,一般情况下查为null的列,会查出没有该列的记录

技术分享图片

  建立hash索引,hash索引和btree索引各有优缺,哈希索引速度比普通索引快,但是,无能对范围查询进行优化

技术分享图片

  重建索引:一个表经过很多次修改后,导致表的文件产生空洞,索引文件也如此。可以通过索引的重建,减少索引文件碎片,并提高索引的效率.

技术分享图片

 

以上是关于基础索引的主要内容,如果未能解决你的问题,请参考以下文章

MySQL——索引基础

Java从入门到入坟系列学习路线目录索引(持续更新中~~~)

Java从入门到入坟系列学习路线目录索引(持续更新中~~~)

mysql基础

MYSQL:基础——索引原理

MYSQL:基础——索引原理