dtb展开成device_node
Posted Paranoid-up
tags:
篇首语:本文由小常识网(cha138.com)小编为大家整理,主要介绍了dtb展开成device_node相关的知识,希望对你有一定的参考价值。
dtb展开成device_node
文章目录
- dtb展开成device_node
- 设备树是如何传递给内核的?
- 设备树相关结构体
- 举例
- of操作函数
- IMX6ULL内核是如何展开设备树为内核可以识别的device_node
设备树是如何传递给内核的?
设备树相关结构体
device_node结构体
device_node结构体定义在include/linux/of.h头文件当中。
struct device_node
const char *name; // 节点名称
const char *type; // 节点类型
phandle phandle; // 节点句柄
const char *full_name; // 节点全名
struct fwnode_handle fwnode;
struct property *properties; // 属性
struct property *deadprops; /* removed properties */
struct device_node *parent; // 父节点
struct device_node *child; // 子节点
struct device_node *sibling; // 兄弟节点
struct kobject kobj; // 内核对象
unsigned long _flags; // 节点标志
void *data; // 数据
#if defined(CONFIG_SPARC)
const char *path_component_name; // 路径组件名称
unsigned int unique_id; // 唯一ID
struct of_irq_controller *irq_trans; // 中断控制器
#endif
;
property结构体
property结构体定义在include/linux/of.h头文件当中。
struct property
char *name; // 属性名称
int length; // 属性长度
void *value; // 属性值
struct property *next; // 下一个属性
unsigned long _flags; // 属性标志
unsigned int unique_id; // 属性唯一ID
struct bin_attribute attr; // 二进制属性
;
举例
下面设备树内置展开后如下
/
model = "this is my devicethree!";
#address-cells = <1>;
#size-cells = <1>;
chosen
bootargs = "root=/dev/nfs rw nfsroot=192.168.1.1 console=ttyS0,115200";
;
cpu: cpu@1
device_type = "cpu";
compatible = "arm,cortex-a35","arm,armv8";
reg = <0x0 0x1>;
;
of操作函数
与查找节点有关的 OF 函数
1、of_find_node_by_name 函数
struct device_node *of_find_node_by_name(struct device_node *from,
const char *name);
函数参数和返回值含义如下:
of_find_node_by_name 函数通过节点名字查找指定的节点,函数原型如下:
from:开始查找的节点,如果为 NULL 表示从根节点开始查找整个设备树。
name:要查找的节点名字。
返回值:找到的节点,如果为NULL 表示查找失败。
2、of_find_node_by_type 函数
of_find_node_by_type 函数通过 device_type 属性查找指定的节点,函数原型如下:
struct device_node *of_find_node_by_type(struct device_node *from, const char *type)
函数参数和返回值含义如下:
from:开始查找的节点,如果为 NULL 表示从根节点开始查找整个设备树。
type:要查找的节点对应的 type 字符串,也就是 device_type 属性值。
返回值:找到的节点,如果为NULL 表示查找失败。
3、of_find_compatible_node 函数
of_find_compatible_node 函数根据 device_type 和 compatible 这两个属性查找指定的节点,
函数原型如下:
struct device_node *of_find_compatible_node(struct device_node *from,
const char *type,
const char *compatible)
函数参数和返回值含义如下:
from:开始查找的节点,如果为 NULL 表示从根节点开始查找整个设备树。
type:要查找的节点对应的 type 字符串,也就是 device_type 属性值,可以为NULL,表示
忽略掉 device_type 属性。
compatible:要查找的节点所对应的 compatible 属性列表。
返回值:找到的节点,如果为NULL 表示查找失败
4、of_find_matching_node_and_match 函数
of_find_matching_node_and_match 函数通过 of_device_id 匹配表来查找指定的节点,函数原
型如下:
struct device_node *of_find_matching_node_and_match(struct device_node *from,
const struct of_device_id *matches, const struct of_device_id **match)
函数参数和返回值含义如下:
from:开始查找的节点,如果为 NULL 表示从根节点开始查找整个设备树。
matches:of_device_id 匹配表,也就是在此匹配表里面查找节点。
match:找到的匹配的 of_device_id。
返回值:找到的节点,如果为NULL 表示查找失败
5、of_find_node_by_path 函数
of_find_node_by_path 函数通过路径来查找指定的节点,函数原型如下:
inline struct device_node *of_find_node_by_path(const char *path)
函数参数和返回值含义如下:
path:带有全路径的节点名,可以使用节点的别名,比如“/backlight”就是 backlight 这个节点的全路径。
返回值:找到的节点,如果为NULL 表示查找失败
查找父/子节点的 OF 函数
1、of_get_parent 函数
of_get_parent 函数用于获取指定节点的父节点(如果有父节点的话),函数原型如下:
struct device_node *of_get_parent(const struct device_node *node)
函数参数和返回值含义如下:
node:父节点。
返回值:找到的父节点。
2、of_get_next_child 函数
of_get_next_child 函数用迭代的方式查找子节点,函数原型如下:
struct device_node *of_get_next_child(const struct device_node *node,
struct device_node *prev)
函数参数和返回值含义如下:
node:要查找的父节点的节点。
prev:前一个子节点,也就是从哪一个子节点开始迭代的查找下一个子节点。可以设置为
NULL,表示从第一个子节点开始。
返回值:找到的下一个子节点。
提取属性值的 OF 函数
1、of_find_property 函数
of_find_property 函数用于查找指定的属性,函数原型如下:
property *of_find_property(const struct device_node *np,
const char *name,
int *lenp)
函数参数和返回值含义如下:
np:设备节点。
name: 属性名字。
lenp:属性值的字节数
返回值:找到的属性。
2、of_property_count_elems_of_size 函数
of_property_count_elems_of_size 函数用于获取属性中元素的数量,比如 reg 属性值是一个
数组,那么使用此函数可以获取到这个数组的大小,此函数原型如下:
int of_property_count_elems_of_size(const struct device_node *np,
const char *propname,
int elem_size)
函数参数和返回值含义如下:
np:设备节点。
proname: 需要统计元素数量的属性名字。
elem_size:元素长度。
返回值:得到的属性元素数量。
3、of_property_read_u32_index 函数
of_property_read_u32_index 函数用于从属性中获取指定标号的 u32 类型数据值(无符号 32
位),比如某个属性有多个 u32 类型的值,那么就可以使用此函数来获取指定标号的数据值,此
函数原型如下:
int of_property_read_u32_index(const struct device_node *np,
const char *propname,
u32 index,
u32 *out_value)
函数参数和返回值含义如下:
np:设备节点。
proname: 要读取的属性名字。
index:要读取的值标号。
out_value:读取到的值
返回值:0 读取成功,负值,读取失败,-EINVAL 表示属性不存在,-ENODATA 表示没有
要读取的数据,-EOVERFLOW 表示属性值列表太小。
4、 of_property_read_u8_array 函数
of_property_read_u16_array 函数
of_property_read_u32_array 函数
of_property_read_u64_array 函数
这 4 个函数分别是读取属性中 u8、u16、u32 和 u64 类型的数组数据,比如大多数的 reg 属
性都是数组数据,可以使用这 4 个函数一次读取出 reg 属性中的所有数据。这四个函数的原型
如下:
int of_property_read_u8_array(const struct device_node *np,
const char *propname,
u8 *out_values,
size_t sz)
int of_property_read_u16_array(const struct device_node *np,
const char *propname,
u16 *out_values,
size_t sz)
int of_property_read_u32_array(const struct device_node *np,
const char *propname,
u32 *out_values,
size_t sz)
int of_property_read_u64_array(const struct device_node *np,
const char *propname,
u64 *out_values,
size_t sz)
函数参数和返回值含义如下:
np:设备节点。
proname: 要读取的属性名字。
out_value:读取到的数组值,分别为 u8、u16、u32 和 u64。
sz:要读取的数组元素数量。
返回值:0,读取成功,负值,读取失败,-EINVAL 表示属性不存在,-ENODATA 表示没
有要读取的数据,-EOVERFLOW 表示属性值列表太小。
5、of_property_read_u8 函数 of_property_read_u16 函数 of_property_read_u32 函数 of_property_read_u64 函数
有些属性只有一个整形值,这四个函数就是用于读取这种只有一个整形值的属性,分别用
于读取 u8、u16、u32 和u64 类型属性值,函数原型如下:
int of_property_read_u8(const struct device_node *np,
const char *propname,
u8 *out_value)
int of_property_read_u16(const struct device_node *np,
const char *propname,
u16 *out_value)
int of_property_read_u32(const struct device_node *np,
const char *propname,
u32 *out_value)
int of_property_read_u64(const struct device_node *np,
const char *propname,
u64 *out_value)
函数参数和返回值含义如下:
np:设备节点。
proname: 要读取的属性名字。
out_value:读取到的数组值。
返回值:0,读取成功,负值,读取失败,-EINVAL 表示属性不存在,-ENODATA 表示没
有要读取的数据,-EOVERFLOW 表示属性值列表太小。
6、 of_property_read_string 函数
of_property_read_string 函数用于读取属性中字符串值,函数原型如下:
int of_property_read_string(struct device_node *np,
const char *propname,
const char **out_string)
函数参数和返回值含义如下:
np:设备节点。
proname: 要读取的属性名字。
out_string:读取到的字符串值。
返回值:0,读取成功,负值,读取失败。
7、of_n_addr_cells 函数
of_n_addr_cells 函数用于获取#address-cells 属性值,函数原型如下:
int of_n_addr_cells(struct device_node *np)
函数参数和返回值含义如下:
np:设备节点。
返回值:获取到的#address-cells 属性值。
8、of_n_size_cells 函数
of_size_cells 函数用于获取#size-cells 属性值,函数原型如下:
int of_n_size_cells(struct device_node *np)
函数参数和返回值含义如下:
np:设备节点。
返回值:获取到的#size-cells 属性值。
其他常用的 OF 函数
1、of_device_is_compatible 函数
of_device_is_compatible 函数用于查看节点的 compatible 属性是否有包含 compat 指定的字
符串,也就是检查设备节点的兼容性,函数原型如下:
int of_device_is_compatible(const struct device_node *device,
const char *compat)
函数参数和返回值含义如下:
device:设备节点。
compat:要查看的字符串。
返回值:0,节点的 compatible 属性中不包含 compat 指定的字符串;正数,节点的 compatible
属性中包含compat 指定的字符串。
2、of_get_address 函数
of_get_address 函数用于获取地址相关属性,主要是“reg”或者“assigned-addresses”属性
值,函数原型如下:
const be32 *of_get_address(struct device_node *dev,
int index,
u64 *size,
unsigned int *flags)
函数参数和返回值含义如下:
dev:设备节点。
index:要读取的地址标号。
size:地址长度。
flags:参数,比如 IORESOURCE_IO、IORESOURCE_MEM 等
返回值:读取到的地址数据首地址,为NULL 的话表示读取失败。
3、of_translate_address 函数
of_translate_address 函数负责将从设备树读取到的地址转换为物理地址,函数原型如下:
u64 of_translate_address(struct device_node *dev,
const be32 *in_addr)
函数参数和返回值含义如下:
dev:设备节点。
in_addr:要转换的地址。
返回值:得到的物理地址,如果为OF_BAD_ADDR 的话表示转换失败。
4、 of_address_to_resource 函数
函数看名字像是从设备树里面提取资源值,但是本质上就是将 reg 属性值,然后将其转换为 resource 结构体类型,函数原型如下所示
int of_address_to_resource(struct device_node *dev,
int index,
struct resource *r)
函数参数和返回值含义如下:
dev:设备节点。
index:地址资源标号。
r:得到的 resource 类型的资源值。
返回值:0,成功;负值,失败。
5、of_iomap 函数
of_iomap 函数用于直接内存映射,以前我们会通过 ioremap 函数来完成物理地址到虚拟地
址的映射,采用设备树以后就可以直接通过 of_iomap 函数来获取内存地址所对应的虚拟地址,
不需要使用 ioremap 函数了。当然了,你也可以使用 ioremap 函数来完成物理地址到虚拟地址
的内存映射,只是在采用设备树以后,大部分的驱动都使用 of_iomap 函数了。of_iomap 函数本
质上也是将reg 属性中地址信息转换为虚拟地址,如果 reg 属性有多段的话,可以通过 index 参
数指定要完成内存映射的是哪一段,of_iomap 函数原型如下:
void iomem *of_iomap(struct device_node *np,
int index)
函数参数和返回值含义如下:
np:设备节点。
index:reg 属性中要完成内存映射的段,如果 reg 属性只有一段的话index 就设置为 0。
返回值:经过内存映射后的虚拟内存首地址,如果为 NULL 的话表示内存映射失败。
IMX6ULL内核是如何展开设备树为内核可以识别的device_node
打开内核源码init/main.c,找到start_kernel函数
asmlinkage __visible void __init start_kernel(void)
char *command_line;
char *after_dashes;
/*
* Need to run as early as possible, to initialize the
* lockdep hash:
*/
/*
* 初始化锁定机制
* 设置初始任务的栈结束标志
* 设置处理器ID
* 初始化调试对象
* 设置初始栈金丝雀
* 初始化cgroup
* 禁用中断
* 启动CPU
* 初始化页地址
* 打印内核版本信息
* 设置内核命令行
* 设置CPU掩码
* 设置每个CPU的区域
* 准备启动CPU
* 构建所有可用的空闲页列表
* 初始化页分配器
*/
lockdep_init();
set_task_stack_end_magic(&init_task);
smp_setup_processor_id();
debug_objects_early_init();
/*
* Set up the the initial canary ASAP:
*/
boot_init_stack_canary();
cgroup_init_early();
local_irq_disable();
early_boot_irqs_disabled = true;
/*
* Interrupts are still disabled. Do necessary setups, then
* enable them
*/
boot_cpu_init();
page_address_init();
pr_notice("%s", linux_banner);
setup_arch(&command_line);
mm_init_cpumask(&init_mm);
setup_command_line(command_line);
setup_nr_cpu_ids();
setup_per_cpu_areas();
smp_prepare_boot_cpu(); /* arch-specific boot-cpu hooks */
build_all_zonelists(NULL, NULL);
page_alloc_init();
为什么要从start_kernel函数入手?
start_kernel函数是内核启动阶段的入囗,类似于main函数。
在start_kernel函数里面有非常多的子函数,这些子函数都是完成Linux内核初始化的函数,这里我们只关心和dtb展开有关的函数。
setup_arch(&command_line);
/arch/arm64/kernel/setup.c
start_kernel
setup_arch
void __init setup_arch(char **cmdline_p)
setup_processor();
setup_machine_fdt(__fdt_pointer);
init_mm.start_code = (unsigned long) _text;
init_mm.end_code = (unsigned long) _etext;
init_mm.end_data = (unsigned long) _edata;
init_mm.brk = (unsigned long) _end;
*cmdline_p = boot_command_line;
early_fixmap_init();
early_ioremap_init();
parse_early_param();
/*
* Unmask asynchronous aborts after bringing up possible earlycon.
* (Report possible System Errors once we can report this occurred)
*/
local_async_enable();
efi_init();
arm64_memblock_init();
/* Parse the ACPI tables for possible boot-time configuration */
acpi_boot_table_init();
paging_init();
request_standard_resources();
early_ioremap_reset();
if (acpi_disabled)
unflatten_device_tree();
psci_dt_init();
cpu_read_bootcpu_ops();
#ifdef CONFIG_SMP
of_smp_init_cpus();
#endif
else
psci_acpi_init();
acpi_init_cpus();
#ifdef CONFIG_SMP
smp_build_mpidr_hash();
#endif
#ifdef CONFIG_VT
#if defined(CONFIG_VGA_CONSOLE)
conswitchp = &vga_con;
#elif defined(CONFIG_DUMMY_CONSOLE)
conswitchp = &dummy_con;
#endif
#endif
if (boot_args[1] || boot_args[2] || boot_args[3])
pr_err("WARNING: x1-x3 nonzero in violation of boot protocol:\\n"
"\\tx1: %016llx\\n\\tx2: %016llx\\n\\tx3: %016llx\\n"
"This indicates a broken bootloader or old kernel\\n",
boot_args[1], boot_args[2], boot_args[3]);
boot_command_line
*cmdline_p = boot_command_line;
char __initdata boot_command_line[COMMAND_LINE_SIZE];
#define COMMAND_LINE_SIZE 1024
记录了uboot传递给内核的boot_command_line,大小是4096.。如果uboot传递给boot_command_line的大小超过4096,就要修改这个数组的大小。
setup_machine_fdt
setup_machine_fdt(__fdt_pointer);
参数__fdt_pointer是dtb位于内存的地址
打开arch/arm64/head.S,找到下列内容
/*
* Preserve the arguments passed by the bootloader in x0 .. x3
*/
preserve_boot_args:
mov x21, x0 // x21=FDT
adr_l x0, boot_args // record the contents of
stp x21, x1, [x0] // x0 .. x3 at kernel entry
stp x2, x3, [x0, #16]
dmb sy // needed before dc ivac with
// MMU off
add x1, x0, #0x20 // 4 x 8 bytes
b __inval_cache_range // tail call
ENDPROC(preserve_boot_args)
可以看到dtb位于内存的地址是x0传递过来的,x0里面存放的地址是规定的。
1: cmp x6, x7
b.hs 2f
str xzr, [x6], #8 // Clear BSS
b 1b
2:
adr_l sp, initial_sp, x4
str_l x21, __fdt_pointer, x5 // Save FDT pointer
str_l x24, memstart_addr, x6 // Save PHYS_OFFSET
mov x29, #0
b start_kernel
ENDPROC(__mmap_switched)
str_l x21, __fdt_pointer, x5将设备位于内存的地址保存到__fdt_pointer。
setup_machine_fdt函数
此时mmu已经开启,需要将dtb位于内存物理地址映射成虚拟地址
start_kernel
setup_arch
setup_machine_fdt
static void __init setup_machine_fdt(phys_addr_t dt_phys)
if (!dt_phys || !early_init_dt_scan(phys_to_virt(dt_phys)))
early_print("\\n"
"Error: invalid device tree blob at physical address 0x%p (virtual address 0x%p)\\n"
"The dtb must be 8-byte aligned and passed in the first 512MB of memory\\n"
"\\nPlease check your bootloader.\\n",
dt_phys, phys_to_virt(dt_phys));
while (true)
cpu_relax();
dump_stack_set_arch_desc("%s (DT)", of_flat_dt_get_machine_name());
phys_to_virt(dt_phys)将dtb位于内存物理地址映射成虚拟地址
of_flat_dt_get_machine_name获取model和compatible属性的值
early_init_dt_scan函数中调用early_init_dt_scan(phys_to_virt(dt_phys)),用于扫描设备树(Device Tree)
start_kernel
setup_arch
setup_machine_fdt
early_init_dt_scan
bool __init early_init_dt_scan(void *params)
bool status;
status = early_init_dt_verify(params);
if (!status)
return false;
early_init_dt_scan_nodes();
return true;
early_init_dt_scan调用early_init_dt_verify(params);检查设备树头部是否满足要求。将内存中dtb的虚拟地址保存到了initial_boot_params
start_kernel
setup_arch
setup_machine_fdt
early_init_dt_scan
early_init_dt_verify
bool __init early_init_dt_verify(void *params)
if (!params)
return false;
/* check device tree validity */
if (fdt_check_header(params))
return false;
/* Setup flat device-tree pointer */
initial_boot_params = params;
of_fdt_crc32 = crc32_be(~0, initial_boot_params,
fdt_totalsize(initial_boot_params));
return true;
start_kernel
setup_arch
setup_machine_fdt
early_init_dt_scan
early_init_dt_scan_nodes
void __init early_init_dt_scan_nodes(void)
/* Retrieve various information from the /chosen node */
of_scan_flat_dt(early_init_dt_scan_chosen, boot_command_line);
/* Initialize size,address-cells info */
of_scan_flat_dt(early_init_dt_scan_root, NULL);
/* Setup memory, calling early_init_dt_add_memory_arch */
of_scan_flat_dt(early_init_dt_scan_memory, NULL);
early_init_dt_scan
early_init_dt_verify(params);
initial_boot_params //将内存中dtb的虚拟地址保存到了initial_boot_params
early_init_dt_scan_nodes
early_fixmap_init
start_kernel
setup_arch
early_fixmap_init //保存dtb位于内存的地址,并设置为只读,不可修改
void __init early_fixmap_init(void)
pgd_t *pgd;
pud_t *pud;
pmd_t *pmd;
unsigned long addr = FIXADDR_START;
pgd = pgd_offset_k(addr);
pgd_populate(&init_mm, pgd, bm_pud);
pud = pud_offset(pgd, addr);
pud_populate(&init_mm, pud, bm_pmd);
pmd = pmd_offset(pud, addr);
pmd_populate_kernel(&init_mm, pmd, bm_pte);
/*
* The boot-ioremap range spans multiple pmds, for which
* we are not preparted:
*/
BUILD_BUG_ON((__fix_to_virt(FIX_BTMAP_BEGIN) >> PMD_SHIFT)
!= (__fix_to_virt(FIX_BTMAP_END) >> PMD_SHIFT));
if ((pmd != fixmap_pmd(fix_to_virt(FIX_BTMAP_BEGIN)))
|| pmd != fixmap_pmd(fix_to_virt(FIX_BTMAP_END)))
WARN_ON(1);
pr_warn("pmd %p != %p, %p\\n",
pmd, fixmap_pmd(fix_to_virt(FIX_BTMAP_BEGIN)),
fixmap_pmd(fix_to_virt(FIX_BTMAP_END)device_node只是某个结构体而已。
在uboot中把设备树文件随表放入内存中的某个地方就可以使用,为什么内核运行过程中它不会覆盖dtb文件所占用的那块内存呢?
在设备树格式那篇文章中曾经说过,在设备树文件中可以用memreserve指定一块内存,这块内存就是保留下来的内存,内核不会占用它。即使没有指定这块内存,当内核启动的时候,它也会把设备树文件所在的那块内存保留出来。
看一下函数的调用过程:
start_kernel // init/main.c
setup_arch(&command_line); // arch/arm/kernel/setup.c
arm_memblock_init(mdesc); // arch/arm/kernel/setup.c
early_init_fdt_reserve_self();
/* Reserve the dtb region */
// 把DTB所占区域保留下来, 即调用: memblock_reserve
early_init_dt_reserve_memory_arch(__pa(initial_boot_params),
fdt_totalsize(initial_boot_params),
0);
early_init_fdt_scan_reserved_mem(); // 根据dtb中的memreserve信息, 调用memblock_reserve
unflatten_device_tree(); // arch/arm/kernel/setup.c
__unflatten_device_tree(initial_boot_params, NULL, &of_root,
early_init_dt_alloc_memory_arch, false); // drivers/of/fdt.c
/* First pass, scan for size */
size = unflatten_dt_nodes(blob, NULL, dad, NULL);
/* Allocate memory for the expanded device tree */
mem = dt_alloc(size + 4, __alignof__(struct device_node));
/* Second pass, do actual unflattening */
unflatten_dt_nodes(blob, mem, dad, mynodes);
populate_node
np = unflatten_dt_alloc(mem, sizeof(struct device_node) + allocl,
__alignof__(struct device_node));
np->full_name = fn = ((char *)np) + sizeof(*np);
populate_properties
pp = unflatten_dt_alloc(mem, sizeof(struct property),
__alignof__(struct property));
pp->name = (char *)pname;
pp->length = sz;
pp->value = (__be32 *)val;
flatten是扁平的,dtb文件是扁平的,里面含有各个设备节点,需要将它们提取出来,构成一棵树。
unflatten_device_tree函数是本篇文章分析的重点。首先看两个结构体:
device_node结构体:
每一个节点都转换为一个device_node结构体:
struct device_node {
const char *name; // 来自节点中的name属性, 如果没有该属性, 则设为"NULL"
const char *type; // 来自节点中的device_type属性, 如果没有该属性, 则设为"NULL"
phandle phandle;
const char *full_name; // 节点的名字, node-name[@unit-address]
struct fwnode_handle fwnode;
struct property *properties; // 节点的属性
struct property *deadprops; /* removed properties */
struct device_node *parent; // 节点的父亲
struct device_node *child; // 节点的孩子(子节点)
struct device_node *sibling; // 节点的兄弟(同级节点)
#if defined(CONFIG_OF_KOBJ)
struct kobject kobj;
#endif
unsigned long _flags;
void *data;
#if defined(CONFIG_SPARC)
const char *path_component_name;
unsigned int unique_id;
struct of_irq_controller *irq_trans;
#endif
};
在dts文件中,每一个大括号代表一个节点,比如说根节点,它会对应一个device_node结构体。
memory它也有一个大括号,也对应着一个device_node结构体。
chosen它也有一个大括号,也对应着一个device_node结构体。
在一个节点里面,有可能还有子节点,有一些父子关系,兄弟关系。在device_node中肯定肯定有成员来描述这些关系
device_node结构体中有properties, 用来表示该节点的属性
每一个属性对应一个property结构体:
struct property {
char *name; // 属性名字, 指向dtb文件中的字符串
int length; // 属性值的长度
void *value; // 属性值, 指向dtb文件中value所在位置, 数据仍以big endian存储
struct property *next;
#if defined(CONFIG_OF_DYNAMIC) || defined(CONFIG_SPARC)
unsigned long _flags;
#endif
#if defined(CONFIG_OF_PROMTREE)
unsigned int unique_id;
#endif
#if defined(CONFIG_OF_KOBJ)
struct bin_attribute attr;
#endif
};
以下面的设备树为例,进行分析:
/dts-v1/;
/ {
model = "SMDK24440";
compatible = "samsung,smdk2440";
#address-cells = <1>;
#size-cells = <1>;
memory@30000000 {
device_type = "memory";
reg = <0x30000000 0x4000000>;
};
/*
cpus {
cpu {
compatible = "arm,arm926ej-s";
};
};
*/
chosen {
bootargs = "noinitrd root=/dev/mtdblock4 rw init=/linuxrc console=ttySAC0,115200";
};
led {
compatible = "jz2440_led";
pin = <S3C2410_GPF(5)>;
};
};
以上是关于dtb展开成device_node的主要内容,如果未能解决你的问题,请参考以下文章