深度学习基于华为MindSpore的手写体图像识别实验

Posted 弓长纟隹为

tags:

篇首语:本文由小常识网(cha138.com)小编为大家整理,主要介绍了深度学习基于华为MindSpore的手写体图像识别实验相关的知识,希望对你有一定的参考价值。

1 实验介绍

1.1 简介

Mnist手写体图像识别实验是深度学习入门经典实验。Mnist数据集包含60,000个用于训练的示例和10,000个用于测试的示例。这些数字已经过尺寸标准化并位于图像中心,图像是固定大小(28x28像素),其值为0到255。为简单起见,每个图像都被平展并转换为784(28*28)个特征的一维numpy数组。

1.2 实验目的

  1. 学会如何搭建全连接神经网络。
  2. 掌握搭建网络过程中的关键点。
  3. 掌握分类任务的整体流程。

2.2 实验环境要求 

推荐在华为云ModelArts实验平台完成实验,也可在本地搭建python3.7.5和MindSpore1.0.0环境完成实验。

2.3 实验总体设计

创建实验环境:在本地搭建MindSpore环境。

导入实验所需模块:该步骤通常都是程序编辑的第一步,将实验代码所需要用到的模块包用import命令进行导入。

导入数据集并预处理:神经网络的训练离不开数据,这里对数据进行导入。同时,因为全连接网络只能接收固定维度的输入数据,所以,要对数据集进行预处理,以符合网络的输入维度要求。同时,设定好每一次训练的Batch的大小,以Batch Size为单位进行输入。

模型搭建:利用mindspore.nn的cell模块搭建全连接网络,包含输入层,隐藏层,输出层。同时,配置好网络需要的优化器,损失函数和评价指标。传入数据,并开始训练模型。

模型评估:利用测试集进行模型的评估。

2.4 实验过程

2.4.1 搭建实验环境

Windows下MindSpore实验环境搭建并配置Pycharm请参考【机器学习】Windows下MindSpore实验环境搭建并配置Pycharm_在pycharm上安装mindspore_弓长纟隹为的博客-CSDN博客

官网下载MNIST数据集 MNIST handwritten digit database, Yann LeCun, Corinna Cortes and Chris Burges

在MNIST文件夹下建立train和test两个文件夹,train中存放train-labels-idx1-ubyte和train-images-idx3-ubyte文件,test中存放t10k-labels-idx1-ubyte和t10k-images-idx3-ubyte文件。

2.4.2  模型训练、测试及评估

#导入相关依赖库
import  os
import numpy as np
from matplotlib import pyplot as plt
import mindspore as ms
#context模块用于设置实验环境和实验设备
import mindspore.context as context
#dataset模块用于处理数据形成数据集
import mindspore.dataset as ds
#c_transforms模块用于转换数据类型
import mindspore.dataset.transforms as C
#vision.c_transforms模块用于转换图像,这是一个基于opencv的高级API
import mindspore.dataset.vision as CV
#导入Accuracy作为评价指标
from mindspore.nn.metrics import Accuracy
#nn中有各种神经网络层如:Dense,ReLu
from mindspore import nn
#Model用于创建模型对象,完成网络搭建和编译,并用于训练和评估
from mindspore.train import Model
#LossMonitor可以在训练过程中返回LOSS值作为监控指标
from mindspore.train.callback import  LossMonitor
#设定运行模式为动态图模式,并且运行设备为昇腾芯片
context.set_context(mode=context.GRAPH_MODE, device_target='CPU')
#MindSpore内置方法读取MNIST数据集
ds_train = ds.MnistDataset(os.path.join(r'D:\\Dataset\\MNIST', "train"))
ds_test = ds.MnistDataset(os.path.join(r'D:\\Dataset\\MNIST', "test"))

print('训练数据集数量:',ds_train.get_dataset_size())
print('测试数据集数量:',ds_test.get_dataset_size())
#该数据集可以通过create_dict_iterator()转换为迭代器形式,然后通过get_next()一个个输出样本
image=ds_train.create_dict_iterator().get_next()
#print(type(image))
print('图像长/宽/通道数:',image['image'].shape)
#一共10类,用0-9的数字表达类别。
print('一张图像的标签样式:',image['label'])
DATA_DIR_TRAIN = "D:/Dataset/MNIST/train" # 训练集信息
DATA_DIR_TEST = "D:/Dataset/MNIST/test" # 测试集信息

def create_dataset(training=True, batch_size=128, resize=(28, 28), rescale=1 / 255, shift=-0.5, buffer_size=64):
    ds = ms.dataset.MnistDataset(DATA_DIR_TRAIN if training else DATA_DIR_TEST)

    # 定义改变形状、归一化和更改图片维度的操作。
    # 改为(28,28)的形状
    resize_op = CV.Resize(resize)
    # rescale方法可以对数据集进行归一化和标准化操作,这里就是将像素值归一到0和1之间,shift参数可以让值域偏移至-0.5和0.5之间
    rescale_op = CV.Rescale(rescale, shift)
    # 由高度、宽度、深度改为深度、高度、宽度
    hwc2chw_op = CV.HWC2CHW()

    # 利用map操作对原数据集进行调整
    ds = ds.map(input_columns="image", operations=[resize_op, rescale_op, hwc2chw_op])
    ds = ds.map(input_columns="label", operations=C.TypeCast(ms.int32))
    # 设定洗牌缓冲区的大小,从一定程度上控制打乱操作的混乱程度
    ds = ds.shuffle(buffer_size=buffer_size)
    # 设定数据集的batch_size大小,并丢弃剩余的样本
    ds = ds.batch(batch_size, drop_remainder=True)

    return ds
#显示前10张图片以及对应标签,检查图片是否是正确的数据集
dataset_show = create_dataset(training=False)
data = dataset_show.create_dict_iterator().get_next()
images = data['image'].asnumpy()
labels = data['label'].asnumpy()

for i in range(1,11):
    plt.subplot(2, 5, i)
    #利用squeeze方法去掉多余的一个维度
    plt.imshow(np.squeeze(images[i]))
    plt.title('Number: %s' % labels[i])
    plt.xticks([])
plt.show()

# 利用定义类的方式生成网络,Mindspore中定义网络需要继承nn.cell。在init方法中定义该网络需要的神经网络层
# 在construct方法中梳理神经网络层与层之间的关系。
class ForwardNN(nn.Cell):
    def __init__(self):
        super(ForwardNN, self).__init__()
        self.flatten = nn.Flatten()
        self.relu = nn.ReLU()
        self.fc1 = nn.Dense(784, 512, activation='relu')
        self.fc2 = nn.Dense(512, 256, activation='relu')
        self.fc3 = nn.Dense(256, 128, activation='relu')
        self.fc4 = nn.Dense(128, 64, activation='relu')
        self.fc5 = nn.Dense(64, 32, activation='relu')
        self.fc6 = nn.Dense(32, 10, activation='softmax')

    def construct(self, input_x):
        output = self.flatten(input_x)
        output = self.fc1(output)
        output = self.fc2(output)
        output = self.fc3(output)
        output = self.fc4(output)
        output = self.fc5(output)
        output = self.fc6(output)
        return output

lr = 0.001
num_epoch = 10
momentum = 0.9

net = ForwardNN()
#定义loss函数,改函数不需要求导,可以给离散的标签值,且loss值为均值
loss = nn.loss.SoftmaxCrossEntropyWithLogits( sparse=True, reduction='mean')
#定义准确率为评价指标,用于评价模型
metrics="Accuracy": Accuracy()
#定义优化器为Adam优化器,并设定学习率
opt = nn.Adam(net.trainable_params(), lr)


#生成验证集,验证机不需要训练,所以不需要repeat
ds_eval = create_dataset(False, batch_size=32)
#模型编译过程,将定义好的网络、loss函数、评价指标、优化器编译
model = Model(net, loss, opt, metrics)

#生成训练集
ds_train = create_dataset(True, batch_size=32)
print("============== Starting Training ==============")
#训练模型,用loss作为监控指标,并利用昇腾芯片的数据下沉特性进行训练
model.train(num_epoch, ds_train,callbacks=[LossMonitor()],dataset_sink_mode=True)

#使用测试集评估模型,打印总体准确率
metrics_result=model.eval(ds_eval)
print(metrics_result)

备注:

若报错 AttributeError: ‘DictIterator’ object has no attribute ‘get_next’ ,这是说MindSpore数据类中缺少 “get_next”这个方法,但是在MNIST图像识别的官方代码中却使用了这个方法,这就说明MindSpore官方把这个变成私密方法。

只需要在源码iterators.py中找到DictIterator这个类,将私有方法变成公有方法就行了(即去掉最前面的下划线)。

参考mindspore 报错 AttributeError: ‘DictIterator‘ object has no attribute ‘get_next‘_create_dict_iterator_TNiuB的博客-CSDN博客

MindSpore:前馈神经网络时报错‘DictIterator‘ has no attribute ‘get_next‘_skytier的博客-CSDN博客

更多问题请参考Window10 上MindSpore(CPU)用LeNet网络训练MNIST - 知乎 

MindSpore手写数字识别体验

文章目录


今天带大家体验一下 MindSpore 这个 AI 框架来完成手写数字识别的任务

1. 环境准备

使用Anaconda创建虚拟环境:

conda create -n mindspore python=3.8


创建完成后会显示以下的图像界面

这样我们的虚拟环境mindspore就创造完成

2. 安装minspore及其套件

mindspore 的安装可以参考:
https://mindspore.cn/install

conda install mindspore-cpu=1.8.1 -c mindspore -c conda-forge

验证安装是否成功:

python -c "import mindspore;mindspore.run_check()"

如果输出下方内容,就成功了

MindSpore version: 版本号
The result of multiplication calculation is correct, MindSpore has been installed successfully!

接下来继续安装其他依赖

pip install mindvision jupyterlab

安装 mindvision 是为了使用MindSpore Vision套件,其提供了用于下载并处理MNIST数据集的Mnist模块。
安装jupyterlab使用jupyter-lab来编写程序

安装完成后激活jupyter-lab环境

jupyter-lab

3. 程序撰写

from mindvision.dataset import Mnist

# 下载并处理MNIST数据集
download_train = Mnist(path="./mnist", split="train", batch_size=32, repeat_num=1, shuffle=True, resize=32, download=True)

download_eval = Mnist(path="./mnist", split="test", batch_size=32, resize=32, download=True)

dataset_train = download_train.run()
dataset_eval = download_eval.run()

import mindspore.nn as nn

class LeNet5(nn.Cell):
    """
    LeNet-5网络结构
    """
    def __init__(self, num_class=10, num_channel=1):
        super(LeNet5, self).__init__()
        # 卷积层,输入的通道数为num_channel,输出的通道数为6,卷积核大小为5*5
        self.conv1 = nn.Conv2d(num_channel, 6, 5, pad_mode='valid')
        # 卷积层,输入的通道数为6,输出的通道数为16,卷积核大小为5*5
        self.conv2 = nn.Conv2d(6, 16, 5, pad_mode='valid')
        # 全连接层,输入个数为16*5*5,输出个数为120
        self.fc1 = nn.Dense(16 * 5 * 5, 120)
        # 全连接层,输入个数为120,输出个数为84
        self.fc2 = nn.Dense(120, 84)
        # 全连接层,输入个数为84,分类的个数为num_class
        self.fc3 = nn.Dense(84, num_class)
        # ReLU激活函数
        self.relu = nn.ReLU()
        # 池化层
        self.max_pool2d = nn.MaxPool2d(kernel_size=2, stride=2)
        # 多维数组展平为一维数组
        self.flatten = nn.Flatten()

    def construct(self, x):
        # 使用定义好的运算构建前向网络
        x = self.conv1(x)
        x = self.relu(x)
        x = self.max_pool2d(x)
        x = self.conv2(x)
        x = self.relu(x)
        x = self.max_pool2d(x)
        x = self.flatten(x)
        x = self.fc1(x)
        x = self.relu(x)
        x = self.fc2(x)
        x = self.relu(x)
        x = self.fc3(x)
        return x

network = LeNet5(num_class=10)

import mindspore.nn as nn

# 定义损失函数
net_loss = nn.SoftmaxCrossEntropyWithLogits(sparse=True, reduction='mean')

# 定义优化器函数
net_opt = nn.Momentum(network.trainable_params(), learning_rate=0.01, momentum=0.9)

import mindspore as ms

# 设置模型保存参数,模型训练保存参数的step为1875。
config_ck = ms.CheckpointConfig(save_checkpoint_steps=1875, keep_checkpoint_max=10)

# 应用模型保存参数
ckpoint = ms.ModelCheckpoint(prefix="lenet", directory="./lenet", config=config_ck)

from mindvision.engine.callback import LossMonitor
import mindspore as ms

# 初始化模型参数
model = ms.Model(network, loss_fn=net_loss, optimizer=net_opt, metrics='accuracy')

# 训练网络模型,并保存为lenet-1_1875.ckpt文件
model.train(10, dataset_train, callbacks=[ckpoint, LossMonitor(0.01, 1875)])

acc = model.eval(dataset_eval)

print("".format(acc))


import mindspore as ms

# 加载已经保存的用于测试的模型
param_dict = ms.load_checkpoint("./lenet/lenet-1_1875.ckpt")
# 加载参数到网络中
ms.load_param_into_net(network, param_dict)

import numpy as np
import mindspore as ms
import matplotlib.pyplot as plt

mnist = Mnist("./mnist", split="train", batch_size=6, resize=32)
dataset_infer = mnist.run()
ds_test = dataset_infer.create_dict_iterator()
data = next(ds_test)
images = data["image"].asnumpy()
labels = data["label"].asnumpy()

plt.figure()
for i in range(1, 7):
    plt.subplot(2, 3, i)
    plt.imshow(images[i-1][0], interpolation="None", cmap="gray")
plt.show()

# 使用函数model.predict预测image对应分类
output = model.predict(ms.Tensor(data['image']))
predicted = np.argmax(output.asnumpy(), axis=1)

# 输出预测分类与实际分类
print(f'Predicted: "predicted", Actual: "labels"')


程序的输出和实际的一致,说明本次的模型训练和预测是很成功的。

4. 总结

整个流程下来,从模型的设计导训练,整个流程都比较清晰,优化器的设置和参数等的定义都很直观。整体上模型的体验都是不错的,但在jupyter-lab运行时候的warning无法消除,在观感上有点不大好。

欢迎加入MindSpore社区体验这个小任务

以上是关于深度学习基于华为MindSpore的手写体图像识别实验的主要内容,如果未能解决你的问题,请参考以下文章

基于华为云深度学习的手写数字识别

图像识别 基于Keras的手写数字识别(含代码)

基于 Mindspore 框架与 ModelArts 平台的 MNIST 手写体识别实验

自动驾驶深度学习计算框架有了新选择,华为发布全场景AI计算框架MindSpore

MindSpore手写数字识别体验

MindSpore手写数字识别体验