二阶段提交
Posted Amazing_deron
tags:
篇首语:本文由小常识网(cha138.com)小编为大家整理,主要介绍了二阶段提交相关的知识,希望对你有一定的参考价值。
二阶段提交(2 Phase Commitment Protocol):
为了使分布式系统架构下的各个节点在进行事务提交时保持一致性的一种协议。二阶段提交通过协调者和各个参与者的配合,实现分布式一致性。
角色
- 协调者:调度事务
- 参与者:参与事务的执行和投票
第一阶段:投票阶段。
协调者向所有的参与者节点询问是否可以执行提交操作,并开始等待各参与节点的响应;
参与者执行询问发起为止的所有事务操作,并将Undo信息和Redo信息写入事务日志(但是不提交事务)。如果参与者节点的事务操作实际执行成功,则它返回一个"同意"消息,如果参与者节点的事务实际执行失败,则它返回一个"中止"消息;
第二阶段:提交阶段
当协调者从所有的参与者节点获得的相应消息都是"同意"时:
1).协调者节点向所有参与者节点发出"正式提交(commit)"的请求
2).参与者正式完成操作,并释放在整个事务期间占用的资源
3).参与者节点向协调者节点发送"ack完成"消息
4).协调者收到所有参与者节点反馈的"ack完成"消息后,完成事务
如果任一参与者节点在第一阶段返回的信息是"中止",或者协调者节点在第一阶段的询问超时之前无法获取所有参与者节点的响应信息时,那么这个事务就会被回滚:
1).协调者节点向所有参与者节点发出"回滚操作(rollback)"的请求
2).参与者节点利用之前的Undo信息执行回滚,并释放在整个事务期间占用的资源
3).参与者节点向协调者节点发送"ack回滚完成"信息
4).协调者节点收到所有参与者节点反馈的"ack回滚完成"信息后,取消事务
不管最后结果如何,第二阶段都会结束当前事务。
2 PC存在的问题:
- 性能问题:执行过程中,所有参与节点都是事务阻塞型的。当参与者占有公共资源时,其他第三方节点访问公共资源不得不处于阻塞状态。
- 可靠性问题:参与者发生故障。协调者需要给每个参与者额外指定超时机制,超时后整个事务失败。协调者发生故障。参与者会一直阻塞下去。
- 数据一致性问题:二阶段无法解决的问题:协调者在发出
commit消息之后宕机,而唯一接收到这条消息的参与者同时也宕机了。那么即使协调者通过选举协议产生了新的协调者,这条事务的状态也是不确定的,没人知道事务是否被已经提交。
2PC的优点:
尽量保证了数据的强一致,适合对数据强一致要求很高的关键领域。(其实也不能100%保证强一致)
二阶段提交,三阶段提交,Paxos
本文转载自:http://blog.csdn.net/u010191243/article/details/52081891
http://blog.chinaunix.net/uid-16723279-id-3803058.html
随着大型网站的各种高并发访问、海量数据处理等场景越来越多,如何实现网站的高可用、易伸缩、可扩展、安全等目标就显得越来越重要。
为了解决这样一系列问题,大型网站的架构也在不断发展。提高大型网站的高可用架构,不得不提的就是分布式。本文主要介绍关于分布式事务,二阶段提交和三阶段提交。
在分布式系统中,为了保证数据的高可用,通常,我们会将数据保留多个副本(replica),这些副本会放置在不同的物理的机器上。为了对用户提供正确的增\\删\\改\\差等语义,我们需要保证这些放置在不同物理机器上的副本是一致的。
为了解决这种分布式一致性问题,前人在性能和数据一致性的反反复复权衡过程中总结了许多典型的协议和算法。其中比较著名的有二阶提交协议、三阶提交协议和Paxos算法。
2PC 分布式事务
分布式事务是指会涉及到操作多个数据库的事务。其实就是将对同一库事务的概念扩大到了对多个库的事务。目的是为了保证分布式系统中的数据一致性。分布式事务处理的关键是必须有一种方法可以知道事务在任何地方所做的所有动作,提交或回滚事务的决定必须产生统一的结果(全部提交或全部回滚)在分布式系统中,各个节点之间在物理上相互独立,通过网络进行沟通和协调。由于存在事务机制,可以保证每个独立节点上的数据操作可以满足ACID。但是,相互独立的节点之间无法准确的知道其他节点中的事务执行情况。所以从理论上讲,两台机器理论上无法达到一致的状态。如果想让分布式部署的多台机器中的数据保持一致性,那么就要保证在所有节点的数据写操作,要不全部都执行,要么全部的都不执行。但是,一台机器在执行本地事务的时候无法知道其他机器中的本地事务的执行结果。所以他也就不知道本次事务到底应该commit还是 roolback。所以,常规的解决办法就是引入一个“协调者”的组件来统一调度所有分布式节点的执行。
二阶段提交(Two-phaseCommit)是指,在计算机网络以及数据库领域内,为了使基于分布式系统架构下的所有节点在进行事务提交时保持一致性而设计的一种算法(Algorithm)。通常,二阶段提交也被称为是一种协议(Protocol))。在分布式系统中,每个节点虽然可以知晓自己的操作时成功或者失败,却无法知道其他节点的操作的成功或失败。当一个事务跨越多个节点时,为了保持事务的ACID特性,需要引入一个作为协调者的组件来统一掌控所有节点(称作参与者)的操作结果并最终指示这些节点是否要把操作结果进行真正的提交(比如将更新后的数据写入磁盘等等)。因此,二阶段提交的算法思路可以概括为:参与者将操作成败通知协调者,再由协调者根据所有参与者的反馈情报决定各参与者是否要提交操作还是中止操作。
所谓的两个阶段是指:第一阶段:准备阶段(投票阶段)和第二阶段:提交阶段(执行阶段)。
准备阶段
事务协调者(事务管理器)给每个参与者(资源管理器)发送Prepare消息,每个参与者要么直接返回失败(如权限验证失败),要么在本地执行事务,写本地的redo和undo日志,但不提交,到达一种“万事俱备,只欠东风”的状态。
可以进一步将准备阶段分为以下三个步骤:
1)协调者节点向所有参与者节点询问是否可以执行提交操作(vote),并开始等待各参与者节点的响应。
2)参与者节点执行询问发起为止的所有事务操作,并将Undo信息和Redo信息写入日志。(注意:若成功这里其实每个参与者已经执行了事务操作)
3)各参与者节点响应协调者节点发起的询问。如果参与者节点的事务操作实际执行成功,则它返回一个”同意”消息;如果参与者节点的事务操作实际执行失败,则它返回一个”中止”消息。
提交阶段
如果协调者收到了参与者的失败消息或者超时,直接给每个参与者发送回滚(Rollback)消息;否则,发送提交(Commit)消息;参与者根据协调者的指令执行提交或者回滚操作,释放所有事务处理过程中使用的锁资源。(注意:必须在最后阶段释放锁资源)
接下来分两种情况分别讨论提交阶段的过程。
当协调者节点从所有参与者节点获得的相应消息都为”同意”时:
1)协调者节点向所有参与者节点发出”正式提交(commit)”的请求。
2)参与者节点正式完成操作,并释放在整个事务期间内占用的资源。
3)参与者节点向协调者节点发送”完成”消息。
4)协调者节点受到所有参与者节点反馈的”完成”消息后,完成事务。
如果任一参与者节点在第一阶段返回的响应消息为”中止”,或者 协调者节点在第一阶段的询问超时之前无法获取所有参与者节点的响应消息时:
1)协调者节点向所有参与者节点发出”回滚操作(rollback)”的请求。
2)参与者节点利用之前写入的Undo信息执行回滚,并释放在整个事务期间内占用的资源。
3)参与者节点向协调者节点发送”回滚完成”消息。
4)协调者节点受到所有参与者节点反馈的”回滚完成”消息后,取消事务。
不管最后结果如何,第二阶段都会结束当前事务。
二阶段提交看起来确实能够提供原子性的操作,但是不幸的事,二阶段提交还是有几个缺点的:
1、同步阻塞问题。执行过程中,所有参与节点都是事务阻塞型的。当参与者占有公共资源时,其他第三方节点访问公共资源不得不处于阻塞状态。
2、单点故障。由于协调者的重要性,一旦协调者发生故障。参与者会一直阻塞下去。尤其在第二阶段,协调者发生故障,那么所有的参与者还都处于锁定事务资源的状态中,而无法继续完成事务操作。(如果是协调者挂掉,可以重新选举一个协调者,但是无法解决因为协调者宕机导致的参与者处于阻塞状态的问题)
3、数据不一致。在二阶段提交的阶段二中,当协调者向参与者发送commit请求之后,发生了局部网络异常或者在发送commit请求过程中协调者发生了故障,这回导致只有一部分参与者接受到了commit请求。而在这部分参与者接到commit请求之后就会执行commit操作。但是其他部分未接到commit请求的机器则无法执行事务提交。于是整个分布式系统便出现了数据部一致性的现象。
4、二阶段无法解决的问题:协调者再发出commit消息之后宕机,而唯一接收到这条消息的参与者同时也宕机了。那么即使协调者通过选举协议产生了新的协调者,这条事务的状态也是不确定的,没人知道事务是否被已经提交。
由于二阶段提交存在着诸如同步阻塞、单点问题、脑裂等缺陷,所以,研究者们在二阶段提交的基础上做了改进,提出了三阶段提交。
3PC
三阶段提交(Three-phase commit),也叫三阶段提交协议(Three-phase commit protocol),是二阶段提交(2PC)的改进版本。
与两阶段提交不同的是,三阶段提交有两个改动点。
1、引入超时机制。同时在协调者和参与者中都引入超时机制。
2、在第一阶段和第二阶段中插入一个准备阶段。保证了在最后提交阶段之前各参与节点的状态是一致的。
也就是说,除了引入超时机制之外,3PC把2PC的准备阶段再次一分为二,这样三阶段提交就有CanCommit
、PreCommit
、DoCommit
三个阶段。
CanCommit阶段
3PC的CanCommit阶段其实和2PC的准备阶段很像。协调者向参与者发送commit请求,参与者如果可以提交就返回Yes响应,否则返回No响应。
1.事务询问 协调者向参与者发送CanCommit请求。询问是否可以执行事务提交操作。然后开始等待参与者的响应。
2.响应反馈 参与者接到CanCommit请求之后,正常情况下,如果其自身认为可以顺利执行事务,则返回Yes响应,并进入预备状态。否则反馈No
PreCommit阶段
协调者根据参与者的反应情况来决定是否可以记性事务的PreCommit操作。根据响应情况,有以下两种可能。
假如协调者从所有的参与者获得的反馈都是Yes响应,那么就会执行事务的预执行。
1.发送预提交请求 协调者向参与者发送PreCommit请求,并进入Prepared阶段。
2.事务预提交 参与者接收到PreCommit请求后,会执行事务操作,并将undo和redo信息记录到事务日志中。
3.响应反馈 如果参与者成功的执行了事务操作,则返回ACK响应,同时开始等待最终指令。
假如有任何一个参与者向协调者发送了No响应,或者等待超时之后,协调者都没有接到参与者的响应,那么就执行事务的中断。
1.发送中断请求 协调者向所有参与者发送abort请求。
2.中断事务 参与者收到来自协调者的abort请求之后(或超时之后,仍未收到协调者的请求),执行事务的中断。
doCommit阶段
该阶段进行真正的事务提交,也可以分为以下两种情况。
执行提交
1.发送提交请求 协调接收到参与者发送的ACK响应,那么他将从预提交状态进入到提交状态。并向所有参与者发送doCommit请求。
2.事务提交 参与者接收到doCommit请求之后,执行正式的事务提交。并在完成事务提交之后释放所有事务资源。
3.响应反馈 事务提交完之后,向协调者发送Ack响应。
4.完成事务 协调者接收到所有参与者的ack响应之后,完成事务。
中断事务 协调者没有接收到参与者发送的ACK响应(可能是接受者发送的不是ACK响应,也可能响应超时),那么就会执行中断事务。
1.发送中断请求 协调者向所有参与者发送abort请求
2.事务回滚 参与者接收到abort请求之后,利用其在阶段二记录的undo信息来执行事务的回滚操作,并在完成回滚之后释放所有的事务资源。
3.反馈结果 参与者完成事务回滚之后,向协调者发送ACK消息
4.中断事务 协调者接收到参与者反馈的ACK消息之后,执行事务的中断。
在doCommit阶段,如果参与者无法及时接收到来自协调者的doCommit或者rebort请求时,会在等待超时之后,会继续进行事务的提交。(其实这个应该是基于概率来决定的,当进入第三阶段时,说明参与者在第二阶段已经收到了PreCommit请求,那么协调者产生PreCommit请求的前提条件是他在第二阶段开始之前,收到所有参与者的CanCommit响应都是Yes。(一旦参与者收到了PreCommit,意味他知道大家其实都同意修改了)所以,一句话概括就是,当进入第三阶段时,由于网络超时等原因,虽然参与者没有收到commit或者abort响应,但是他有理由相信:成功提交的几率很大。 )
2PC与3PC的区别
相对于2PC,3PC主要解决的单点故障问题,并减少阻塞,因为一旦参与者无法及时收到来自协调者的信息之后,他会默认执行commit。而不会一直持有事务资源并处于阻塞状态。但是这种机制也会导致数据一致性问题,因为,由于网络原因,协调者发送的abort响应没有及时被参与者接收到,那么参与者在等待超时之后执行了commit操作。这样就和其他接到abort命令并执行回滚的参与者之间存在数据不一致的情况。
PASOX算法
pasox的两个原则
安全原则---保证不能做错的事
1. 只能有一个值被批准,不能出现第二个值把第一个覆盖的情况
2. 每个节点只能学习到已经被批准的值,不能学习没有被批准的值
存活原则---只要有多数服务器存活并且彼此间可以通信最终都要做到的事
1. 最终会批准某个被提议的值
2. 一个值被批准了,其他服务器最终会学习到这个值
pasox的两个组件
Proposer
提议发起者,处理客户端请求,将客户端的请求发送到集群中,以便决定这个值是否可以被批准。
Acceptor
提议批准者,负责处理接收到的提议,他们的回复就是一次投票。会存储一些状态来决定是否接收一个值
pasox的定义
首先从最简单的方式开始,假设只有一个Acceptor,多个Proposer,让它做决定是否批准一个值
每一个proposer提议一个值给Acceptor来批准,然后Acceptor批准一个值作为最终的值。
如何保证一致性?使用互斥(锁),只有一个proposer能够得到锁,一旦值被写入,后面得到锁的proposer无法改变值。
但是如果某个proposer获得锁以后,在赋值前down掉了,还没有释放锁资源,那么此时产生了死锁。
抢占式
为了解决死锁问题,引入了proposer抢占式,
acceptor可以让某个proposer的访问失效,不再接收它的访问。之后可以将访问权发放给其他proposer。
proposer向acceptor申请访问权时指定编号epoch(越大越新,可以使用当前时间作为epoch),获得访问权以后才能向acceptor提交新值。
acceptor采用“喜新厌旧”原则,一旦更大的epoch申请访问,马上让旧的epoch访问失效,不再接收他们提交的取值。然后给新的epoch发放访问权限,接受新的epoch的取值。
新的epoch可以抢占旧epoch,让旧epoch访问失效,旧epoch的proposer将无法进行,新epoch的proposer将开始运行。
为了保证一致性,不同epoch的proposer采用“后者认同前者”的原则:
在肯定旧epoch无法生成确定性取值时,新的epoch会提交自己的value,不会冲突。
一旦旧epoch形成确定性取值,新的epoch肯定可以获得此取值,并且会认同此取值,不会破坏。
这样就解决了死锁问题。
多个Acceptor
paxos算法就是在抢占式的基础上引入多个acceptor,acceptor的实现保持不变,仍采用“喜新厌旧”的原则运行。
paxos采用“少数服从多数“原则,一旦某个epoch的取值f被半数以上的acceptor接受,则认为确认了f,不能再被更改。
proposer第一阶段:
选定epoch,获取半数以上访问权,获取acceptor当前值。
proposer第二阶段:
如果获得的当前所有acceptor的值为null,则将自己的值v提交给所有获取访问权的acceptor,如果收到半数以上acceptor成功,则返回成功,否则失败(acceptor故障或者被新的epoch抢占)。
如果获得的当前acceptor中有某个有值,则认同其中最大的epoch提交的值f,如果此时f已经是半数以上acceptor的值,那么返回成功。如果不是,则向所有获得访问权的acceptor提交f。
paxos算法可以满足容错需求,半数以下acceptor出现故障时,存活的acceptor仍然可以生成确定性取值,一旦取值被确定,即使半数以下acceptor故障,此取值可以被获取,并且将不再被更改。
提议ID生成算法(epoch)
在Google的Chubby论文中给出了这样一种方法:假设有n个proposer,每个编号为ir(0<=ir<n),proposor编号的任何值s都应该大于它已知的最大值,并且满足:s %n = ir => s = m*n + ir
proposer已知的最大值来自两部分:proposer自己对编号自增后的值和接收到acceptor的reject后所得到的值
以3个proposer P1、P2、P3为例,开始m=0,编号分别为0,1,2
1. P1提交的时候发现了P2已经提交,P2编号为1 > P1的0,因此P1重新计算编号:new P1 = 1*3+0 = 4
2. P3以编号2提交,发现小于P1的4,因此P3重新编号:new P3 = 1*3+2 = 5
PASOX与2PC的区别
paxos虽然也是分布式情况下强一致性算法,但他在2PC上至少有两点改进
-
不存在说网路问题导致事务阻塞甚至失败,尤其是连接coordinator的,因为paxos的角色是可以互串的,必要时participant也能充当coordinator
-
加在任何一个在1b2b阶段投了赞成票的participant上的锁是可以被砸开的:只要新提案的编号更大,这样就提高吞吐量了,当然频繁的产生新proposer可能会导致活锁:永远无法达成协议,最好设置一个超时机制,过了一定的时间才产生一个proposer
以上是关于二阶段提交的主要内容,如果未能解决你的问题,请参考以下文章