可路由计算引擎实现前置数据库
Posted 小虚竹
tags:
篇首语:本文由小常识网(cha138.com)小编为大家整理,主要介绍了可路由计算引擎实现前置数据库相关的知识,希望对你有一定的参考价值。
❤️作者主页:小虚竹
❤️作者简介:大家好,我是小虚竹。Java领域优质创作者🏆,CSDN博客专家🏆,华为云享专家🏆,掘金年度人气作者🏆,阿里云专家博主🏆,51CTO专家博主🏆
❤️技术活,该赏
❤️点赞 👍 收藏 ⭐再看,养成习惯
PC端左侧加我微信,进社群,有送书等更多活动!
中央数据仓库局限
很多大机构都会有个中央数据仓库负责向应用提供数据服务。随着业务的发展,中央数据仓库的负载在持续增加。一方面,数仓是前端应用的数据后台,而前端应用不断增多,用户访问的并发数也不断增长。另一方面,数仓还要承担原始数据的批量离线处理,而批量任务不断增加,其数据量和计算量也在不断增大。所以,常常会出现中央数据库不堪重负的情况。表现出来的现象是:批量处理任务耗时过长,远远超过业务可以容忍的时限;在线数据查询响应太慢,用户长时间等待,满意度越来越差。特别是月末或者年末,计算量达到高峰的时候,这些问题会更加严重。
解决方案
方案一:提高中央数据仓库负载能力
解决这个问题最容易想到的方法是提高中央数据仓库的负载能力,也就是对现有数仓进行扩容或者更换其他数仓产品。但是,数仓扩容涉及的软硬件成本都很高,频繁扩容意味着无法承受的巨大投入。而且,数据仓库一旦达到容量上限,这个办法也就不可行了。
将现有的数据仓库换成其他数仓产品的可行性也不高,这牵扯到多个部门、多种应用,更换的综合成本太高,风险也很大。即使真的换了,也不能保证很好的解决这个问题。
方案二:前置库方案
我们发现,现实中的很多应用都有这样一个特点:有一部分小量(热)数据访问频率远高于其它的大量(冷)数据,比如对最近几天数据的查询可能占全部查询的 80% 到 90%。我们可以利用这个特点来解决问题,具体做法是:在中央数据库和前端应用之间增加前置数据库,存放访问频次高的少量热数据。前端应用的查询请求统一提交给前置数据库,由前置库判断查询的是热数据还是冷数据,相应的访问本地数据,或将请求转发给中央数据仓库。最后,将热、冷数据计算结果整合后,统一返回给前端。前置库方案大致是下图这样:
这个方案中,数据流动的路径要遵循一定的数据路由规则:频繁出现的针对少量热数据的查询由前置数据库负责,偶尔出现的针对大量冷数据的查询由中央数仓负责。这样,中央数仓的负载大大降低,不再成为拖累性能的瓶颈。
但是,传统数据库或数仓软件却很难实现这种前置库方案。这是因为,数据库的计算能力是封闭的,只能计算库内的数据,很难实施计算路由规则、查询转发和结果整合等。而且,前置数据库和数据仓库一般是不同类型的软件产品,这时候会更难以实现这类跨库的运算。
按照我们设想的方案,前置库中只会存储少量热数据。如果将传统数据库用作前置库,就只能计算这些热数据,不能计算冷数据,更无法实现冷热数据整合。显然,我们也不可能让前置数据库存储全量数据,这会变成第二个中央数据仓库,不仅带来巨大的成本,也会造成重复建设。
方案三:可路由计算引擎 esProc SPL 实现的前置数据库
如果不能在前置数据库上实现计算路由,就只能在前端应用上想办法。比如在界面上让用户自己选择数据源,但这会降低应用程序的易用性,影响用户满意度。再比如修改应用程序来实现路由和数据整合,但应用程序端并不擅长处理这类运算,结果会导致代码量会很大,开发维护成本高,还很难通用。
esProc SPL 是专业的结构化、半结构化计算引擎,提供开放的计算能力,数据可以从本地存储读取,也可以来自于各种异构数据源,能够轻松实现上述方案中的各种计算需求,非常适合承担前置数据库的作用。SPL 实现前置数据库的架构图大致是下图这样:
SPL 是轻量级计算引擎,热数据量不大时,可以单机部署,甚至可以直接嵌入前端应用中,系统建设成本相对于传统数据库要低很多。
SPL 实现数据路由规则的代码非常简捷。假设前端应用要按客户分组统计,输入参数是开始和结束年份。前端应用的请求中 90% 以上都是计算今年和去年的数据,所以将这两年的热数据存放在 SPL 的组表 sales.ctx 中,全量数据存仍放在中央数据库的 sales 表中。这时,前端应用的请求提交给前置库后,SPL 实现数据路由的代码大致是这样:
A | B | |
---|---|---|
1 | =begin_year=2021 | =end_year=2022 |
2 | if begin_year>=year(now())-1 | =file(“sales.ctx”).open().cursor@m(…;year(sdate)<=end_year) |
3 | return B2.groups(customer;sum(…),avg(…),…) | |
4 | else | =connect(“DW”).query(“select customter,sum(…),avg(…) from sales where year(sdate)>=? And year(sdate)<=? group by customer”,begin_year,end_year) |
5 | return B4 |
A1、A2:前端提交的开始年份和结束年份,实际应用中应作为参数传入,这里为了方便理解直接写在代码中了。
A2-B3:如果开始年份大于等于去年,则用本地热数据 sales.ctx 计算结果,并返回。这里的过滤、分组计算,SPL 只要一两个函数就可以实现。
A4-B5:其他情况则连接中央数据仓库 DW,执行请求并返回结果。SPL 可以轻松连接各种数据库、数据仓库,很容易转发前端的请求,并统一给前端应用返回结果。
SPL 封装了大量结构化、半结构化计算函数,即使面对非常复杂的计算,也可以用很简捷的代码实现。相反,如果在前端应用中利用 Java 等高级语言来实现简单的过滤、分组汇总计算,也需要编写大量代码。
可路由计算引擎 esProc SPL 实现的前置数据库,将少量高频访问的热数据缓存在本地,可以有效提升系统整体的响应速度,减少用户等待时间。同时,前置数据库将绝大部分查询计算从中央数据仓库分离出来,减轻了中央数仓的负担。
SPL资料
我是虚竹哥,我们下文见~
以上是关于可路由计算引擎实现前置数据库的主要内容,如果未能解决你的问题,请参考以下文章