前端深入浅出缓存原理

Posted 接着奏乐接着舞。

tags:

篇首语:本文由小常识网(cha138.com)小编为大家整理,主要介绍了前端深入浅出缓存原理相关的知识,希望对你有一定的参考价值。

缓存的基本原理

对于前端来说,缓存主要分为浏览器缓存(比如 localStorage、sessionStorage、cookie等等)以及http缓存,也是本文主要讲述的。

当然叫法也不一样,比如客户端缓存大概包括浏览器缓存和http缓存

所谓http缓存,顾名思义,是将某一次的响应结果保存在客户端(比如浏览器)中,而后续的请求仅需要从缓存中读取即可,极大的降低了服务器的处理压力。

http缓存的原理如下:

这只是一个简易的原理图,实际情况可能有差异

这里就设计到一个缓存策略的问题,这些问题包括:

  • 哪些资源需要加入到缓存,哪些不需要?
  • 缓存的时间是多久呢?
  • 如果服务器的资源有改动,客户端如何更新缓存呢?
  • 如果缓存过期了,可是服务器上的资源并没有发生变动,又该如何处理呢?

要回答这些问题,就必须要清楚http中关于缓存的协议

理解了http的缓存协议,自然就能回答上面的问题了。

来自服务器的缓存指令

当客户端发出一个get请求到服务器,服务器可能有以下的内心活动:「你请求的这个资源,我很少会改动它,干脆你把它缓存起来吧,以后就不要来烦我了」

为了表达这个美好的愿望,服务器在响应头中加入了以下内容:

Cache-Control: max-age=3600
ETag: W/"121-171ca289ebf"
Date: Thu, 30 Apr 2020 12:39:56 GMT
Last-Modified: Thu, 30 Apr 2020 08:16:31 GMT

这个响应头表达了下面的信息:

  • Cache-Control: max-age=3600,我希望你把这个资源缓存起来,缓存时间是3600秒(1小时)
  • ETag: W/"121-171ca289ebf",这个资源的编号是W/"121-171ca289ebf"
  • Date: Thu, 30 Apr 2020 12:39:56 GMT,我给你响应这个资源的服务器时间是格林威治时间2020-04-30 12:39:56
  • Last-Modified: Thu, 30 Apr 2020 08:16:31 GMT,这个资源的上一次修改时间是格林威治时间2020-04-30 08:16:31

这个美好的缓存愿望,就这样通过响应头传递给客户端了

如果客户端是其他应用程序,可能并不会理会服务器的愿望,也就是说,可能根本不会缓存任何东西。

但是凑巧客户端是一个浏览器,它和服务器一直以来都是相亲相爱的小伙伴,当它看到服务器的这个响应头表达的美好愿望后,立即忙起来:

  • 浏览器把这次请求得到的响应体缓存到本地文件中
  • 浏览器标记这次请求的请求方法和请求路径
  • 浏览器标记这次缓存的时间是3600秒
  • 浏览器记录服务器的响应时间是格林威治时间2020-04-30 12:39:56
  • 浏览器记录服务器给予的资源编号W/"121-171ca289ebf"
  • 浏览器记录资源的上一次修改时间是格林威治时间2020-04-30 08:16:31

这一次的记录非常重要,它为以后浏览器要不要去请求服务器提供了各种依据。

来自客户端的缓存指令

当客户端收拾好行李,准备再次请求GET /index.js时,它突然想起了一件事:我需要的东西在不在缓存里呢?

此时,客户端会到缓存中去寻找是否有缓存的资源

寻找的过程如下:

  1. 缓存中是否有匹配的请求方法和路径?
  2. 如果有,该缓存资源是否还有效呢?

以上两个验证会导致浏览器产生不同的行为

要验证是否有匹配的缓存非常简单,只需要验证当前的请求方法GET和当前的请求路径/index.js是否有对应的缓存存在即可

如果没有,就直接请求服务器,就和第一次请求服务器时一样,这种情况没有什么好讨论的

关键在于验证缓存是否有效

如何验证呢?

非常简单,就是把max-age + Date,得到一个过期时间,看看这个过期时间是否大于当前时间,如果是,则表示缓存还没有过期,仍然有效,如果不是,则表示缓存失效。

缓存有效

当浏览器发现缓存有效时,完全不会请求服务器,直接使用缓存即可得到结果

此时,如果你断开网络,会发现资源仍然可用

这种情况会极大的降低服务器压力,但当服务器更改了资源后,浏览器是不知道的,只要缓存有效,它就会直接使用缓存

缓存无效

当浏览器发现缓存已经过期,它并不会简单的把缓存删除,而是抱着一丝希望,想问问服务器,我这个缓存还能继续使用吗

于是,浏览器向服务器发出了一个带缓存的请求

所谓带缓存的请求,无非就是加入了以下的请求头:

If-Modified-Since: Thu, 30 Apr 2020 08:16:31 GMT
If-None-Match: W/"121-171ca289ebf"

它们表达了下面的信息:

  • If-Modified-Since: Thu, 30 Apr 2020 08:16:31 GMT,亲,你曾经告诉我,这个资源的上一次修改时间是格林威治时间2020-04-30 08:16:31,请问这个资源在这个时间之后有发生变动吗?
  • If-None-Match: W/"121-171ca289ebf",亲,你曾经告诉我,这个资源的编号是W/"121-171ca289ebf,请问这个资源的编号发生变动了吗?

其实,这两个问题可以合并为一个问题:快说!资源到底变了没有!

之所以要发两个信息,是为了兼容不同的服务器,因为有些服务器只认If-Modified-Since,有些服务器只认If-None-Match,有些服务器两个都认

目前的很多服务器,只要发现If-None-Match存在,就不会去看``If-Modified-Since`

If-Modified-Sincehttp1.0版本的规范,If-None-Matchhttp1.1的规范

此时,问题又抛给了服务器,接下来,就是服务器的表演时间了

服务器可能会产生两个情况:

  • 缓存已经失效
  • 缓存仍然有效

如果是第一种情况——缓存已经失效,那么非常简单,服务器再次给予一个正常的响应(响应码200 带响应体),同时可以附带上新的缓存指令,这就回到了上一节——来自服务器的缓存指令

这样一来,客户端就会重新缓存新的内容

但如果服务器觉得缓存仍然有效,它可以通过一种极其简单的方式告诉客户端:

  • 响应码为304 Not Modified
  • 无响应体
  • 响应头带上新的缓存指令,见上一节——来自服务器的缓存指令

这样一来,就相当于告诉客户端:「你的缓存资源仍然可用,我给你一个新的缓存时间,你那边更新一下就可以了」

于是,客户端就继续happy的使用缓存了

这样一来,可以最大程度的减少网络传输,因为如果资源还有效,服务器就不会传输消息体

它们完整的交互过程如下:

细节

上面描述了客户端缓存的基本概念和过程

但其中仍然有不少细节值得我们注意

Cache-Control

在上述的讲解中,Cache-Control是服务器向客户端响应的一个消息头,它提供了一个max-age用于指定缓存时间。

实际上,Cache-Control还可以设置下面一个或多个值:

  • public:指示服务器资源是公开的。比如有一个页面资源,所有人看到的都是一样的。这个值对于浏览器而言没有什么意义,但可能在某些场景可能有用。本着「我告知,你随意」的原则,http协议中很多时候都是客户端或服务器告诉另一端详细的信息,至于另一端用不用,完全看它自己。
  • private:指示服务器资源是私有的。比如有一个页面资源,每个用户看到的都不一样。这个值对于浏览器而言没有什么意义,但可能在某些场景可能有用。本着「我告知,你随意」的原则,http协议中很多时候都是客户端或服务器告诉另一端详细的信息,至于另一端用不用,完全看它自己。
  • no-cache:告知客户端,你可以缓存这个资源,但是不要直接使用它。当你缓存之后,后续的每一次请求都需要附带缓存指令,让服务器告诉你这个资源有没有过期。见:「来自客户端的缓存指令 - 缓存无效」
  • no-store:告知客户端,不要对这个资源做任何的缓存,之后的每一次请求都按照正常的普通请求进行。若设置了这个值,浏览器将不会对该资源做出任何的缓存处理。
  • max-age:不再赘述

比如,Cache-Control: public, max-age=3600表示这是一个公开资源,请缓存1个小时。

Expire

http1.0版本中,是通过Expire响应头来指定过期时间点的,例如:

Expire: Thu, 30 Apr 2020 23:38:38 GMT

到了http1.1版本,已更改为通过Cache-Controlmax-age来记录了。

记录缓存时的有效期

浏览器会按照服务器响应头的要求,自动记录缓存到本地文件,并设置各种相关信息

在这些信息中,有效期尤为关键,它决定了这个缓存可以使用多久

浏览器会根据服务器不同的响应情况,设置不同的有效期

具体的有效期设置,按照下面的流程进行:

例如,当max-age设置为0时,缓存立即过期

虽然立即过期,但缓存仍然被记录下来,后续的请求通过缓存指令发送到服务器,来确认资源是否被更改。

因此,Cache-Control: max-age=0类似于Cache-Control: no-cache

Pragma

这是http1.0版本的消息头

当该消息头出现在请求中时,是向服务器表达:不要考虑任何缓存,给我一个正常的结果。

http1.1版本中,可以在请求头中加入Cache-Control: no-cache实现同样的含义。

是的,Cache-Control可以出现在请求头中

Chrome浏览器中调试时,如果勾选了Disable cache,则发送的请求中会附带该信息

Vary

有的时候,是否有缓存,不仅仅是判断请求方法和请求路径是否匹配,可能还要判断头部信息是否匹配。

此时,就可以使用Vary字段来指定要区分的消息头

比如,当使用GET /personal.html请求服务器时,请求头中cookie的值不一样,得到的页面也不一样

如果还按照之前的做法,仅仅匹配请求方法和请求路径,如果cookie变动,你可能得到的仍然是之前的页面。

正确的做法如下:

使用版本号或hash

如果你是一个前端工程师,使用过vue或其他基于webpack搭建的工程

你会发现打包的结果中很多文件名类似于这样:

app.68297cd8.css

文件的中间部分使用了hash

这样做的好处是,可以让客户端大胆的、长时间的缓存该文件,减轻服务器的压力

当文件改动后,它的文件hash值也会随之而变,比如变成了app.446fccb8.css

这样一来,客户端要请求新的文件时,就会发现路径从/app.68297cd8.css变成了app.446fccb8.css,由于之前的缓存路径无法匹配到,因此就会发送新的请求来获取新资源了。

以上是现代流行的做法。

而在古老的年代,还没有构建工具出现时,人们使用的办法是在资源路径后面加入版本号来获取新版本的文件

比如,页面中引入了一个css资源app.css,它可能的引入方式是:

<link href="/app.css?v=1.0.0">

这样一来,缓存的路径是/app.css?v=1.0.0

当服务器的版本发生变化时,可以给予新的版本号,让html中的路径发生变动

<link href="/app.css?v=1.0.1">

由于新的路径无法命中缓存,于是浏览器就会发送新的普通请求来获取这个资源

总结

最后,通过客户端和服务器两位大佬的视角,来总结一下以上内容

服务器视角

服务器无法知道客户端到底有没有像浏览器那样缓存文件,它只管根据请求的情况来决定如何响应

很多后端语言搭建的服务器都会自带自己的默认缓存规则,当然也支持不同程度的修改

浏览器视角

浏览器在发出请求时会判断要不要使用缓存

当收到服务器响应时,会自动根据缓存指令进行处理

动画:深入浅出从根上理解 HTTP 缓存机制及原理!

HTTP 缓存,对于前端的性能优化方面来讲,是非常关键的,从缓存中读取数据和直接向服务器请求数据,完全就是一个在天上,一个在地下。


我们最熟悉的是 HTTP 服务器响应返回状态码 304,304 代表表示告诉浏览器,本地有缓存数据,可直接从本地获取,无需从服务器获取浪费时间。


至于为什么被缓存,如何命中缓存以及缓存什么时候生效的,我们却很少在实际开发中去了解。今天小鹿借助动画形式来从根上理解 HTTP 缓存机制及原理。


为什么会有缓存?



单纯的从计算机角度去说,比较抽象,咱们看一个实际的例子。比如,我们通常喜欢把没看完的书放在书架上,而看完以及没有看的书放在箱子中保存。


如果我们把所有的书保存在箱子中,每次看书都要去箱子中找,所以非常麻烦和耗时(这里的箱子,可以想象成服务器)。


当我们开始看新书时,第一次从箱子中取出,看了一半,然后我们直接放到书架上,当下次再看书的时候,直接从书架中取出,这里的书架,就是我们下边要讲到的缓存(一个缓存仓库)。


缓存的“龟”则

动画:深入浅出从根上理解 HTTP 缓存机制及原理!


当浏览器发出请求到数据请求回来的过程,就像是上述中的取书过程。


浏览器在加载资源时,根据请求头的Expires 和 Cache-control 判断是否命中强缓存,是则直接从缓存读取资源,不会发请求到服务器。


如果没有命中强缓存,浏览器一定会发送一个请求到服务器,通过 Last-Modified 和 Etag 验证资源是否命中协商缓存,如果命中,服务器会将这个请求返回,但是不会返回这个资源的数据,依然是从缓存中读取资源。


如果前面两者都没有命中,直接从服务器加载资源。


动画演示

动画:深入浅出从根上理解 HTTP 缓存机制及原理!


动画:深入浅出从根上理解 HTTP 缓存机制及原理!


HTTP 缓存分类

动画:深入浅出从根上理解 HTTP 缓存机制及原理!


上述讲到,HTTP 是有“龟”则的,根据浏览器是否向服务器发起请求来分为强缓存和协商缓存


1、强缓存


强缓存的意思就是不向服务器发起请求的缓存,也就是本地强制缓存。浏览器想要获取特定数据的时候,首先会检查一下本地的缓存是否存在该数据,如果存在,就直接在本地获取了,如果不存在,就向服务器所要该数据。


详细请求过程如下动画所示:


动画:深入浅出从根上理解 HTTP 缓存机制及原理!



动画:深入浅出从根上理解 HTTP 缓存机制及原理!


那么问题来了,如果我们想使用强缓存,那怎么判断缓存数据什么时候失效呢?


当浏览器向服务器请求数据的时候,服务器会将数据和缓存的规则返回,在响应头的 header 中,有两个字段 Expires和Cache-Control。


Expires


1expiresWed, 11 Sep 2019 16:12:18 GMT


在响应头中 Expires 字段的意思是,当前返回数据的缓存到期时间戳。当浏览器在进行请求的时候,会那浏览器本地的时候和这个时间做对比,判断资源是否过期。


但是上述存在一个问题就是,如果我手动改变了电脑的时间,那么就会出现问题,这也是 HTTP1.0 中存在的问题。


Cache-Control


为了解决这个问题,在 HTTP2.0 中增加了 Cache-Control 这个字段。


1Cache-Control:max-age=7200


服务器和客户端说,这个资源缓存只可以存在 7200 秒,在这个时间段之内,你就可以在缓存获取资源。


如果 Expire 和 Cache-control 两者同时出现,则以 Cache-control 为主


除此之外,cache-control 还有其他字段可以使用。


1cache-control: max-age=3600, s-maxage=31536000


  • Public:只要为资源设置了 public,那么它既可以被浏览器缓存,也可以被代理服务器缓存;

  • Private(默认值):则该资源只能被浏览器缓存。

  • no-store:不使用任何缓存,直接向服务器发起请求。

  • no-cache:绕开浏览器缓存(每次发起请求不会询问浏览器缓存),而是直接向服务器确认该缓存是够过期。


2、协商缓存


浏览器第一次请求数据时,服务器会将缓存标识与数据一起返回给客户端,客户端将二者备份至缓存数据库中。


再次请求数据时,客户端将备份的缓存标识发送给服务器,服务器根据缓存标识进行判断,判断成功后,返回304状态码,通知客户端比较成功,可以使用缓存数据。


动画:深入浅出从根上理解 HTTP 缓存机制及原理!


动画:深入浅出从根上理解 HTTP 缓存机制及原理!


1// 命中缓存的响应字段
2Request Method:GET
3Status Code: 304 Not Modified


怎么来识别协商缓存的?主要通过报文头部 header 中的Last-Modified,If-Modified-Since 以及ETag、If-None-Match 字段来进行识别。


Last-Modified 


Last-Modified 字段的意思是服务器资源的最后修改时间。第一次请求服务器,服务器的头部字段可增加这个字段,用于设置协商缓存。


1Last-ModifiedFri, 27 Oct 2017 06:35:57 GMT


当浏览器再次发起请求的时候,首部字段增加 If-Modified-Since 本地时间戳字段发给服务器。


1If-Modified-SinceFri, 27 Oct 2017 06:35:57 GMT


服务端接收到请求之后,就拿 If-Modified-Since 字段值和本身的过期时间对比。


如果请求头中的这个值小于最后修改时间,返回的 304 响应,让其在本地浏览器缓存取出数据。如果时间过期,并在 Response Headers中添加新的 Last-Modified 值返回给浏览器。


但是 Last-Modified 存在一个局限性,有以下两种情况:


不该请求,还会请求。编辑了文件,文件内容没有变,但是服务器确认为我们改动了文件,所以重新设置了缓存时间,当做新请求返回给浏览器。


该请求,反而没有请求。修改文件速度很快,快过 If-Modified-Since 字段时间差的检测,文件虽然改动了,但是并没有重新生成新的资源。


ETag


ETag 代表的意思是标识字符串。由于上述 Last-Modified 字段存在的缺陷,所以在 HTTP / 1.1  我们对资源进行内容编码,只要内容被改变,这个编码就不同。


和上述请求原理一样,浏览器首次发起请求,然后服务器在响应头返回一个标识字符串。


1ETag: W/"2a3b-1602480f459"


浏览器再次发起请求,携带一个值相同的字符串。


1If-None-Match: W/"2a3b-1602480f459"


服务端接收到该字符串就会作对比,如果相同,则让其读取本地缓存,否则,将新的资源返回给浏览器端。


缓存位置



缓存的位置按照获取资源请求优先级,缓存位置依次如下:


  • Memory Cache(内存缓存)

  • Service Worker(离线缓存)

  • Disk Cache(磁盘缓存)

  • Push Cache(推送缓存)


Memory Cache


Memory 为内存缓存,是浏览器最先尝试命中的缓存,也是响应最快的缓存。但是存活时间最短的,当进程结束后,tab 标签关闭后,缓存就不存在了。



因为内存空间比较小,通常较小的资源放在内存缓存中,比如 base64 图片等资源。


Service Worker


Service Worker 是一种独立于主线程之外的 Javascript 线程。它脱离于浏览器窗体,因此无法直接访问 DOM。


可以帮我们实现离线缓存、消息推送和网络代理等功能。


Disk Cache


内存的优先性,导致大文件不能缓存到内存中,那么磁盘缓存则不同。虽然存储效率比内存缓存慢,但是存储容量和存储市场有优势。


Push Cache


它是最后一道缓存命中,属于 HTTP2 的内容。如果感兴趣的同学,可以先去了解了解。


-------------------------


一个三本混出来的程序员,维护着一个既有技术又有温度的原创号,一直认为能把复杂的东西讲明白是一件很牛逼的事情。

以上是关于前端深入浅出缓存原理的主要内容,如果未能解决你的问题,请参考以下文章

动画:深入浅出从根上理解 HTTP 缓存机制及原理!

动画:深入浅出从根上理解 HTTP 缓存机制及原理!

web前端缓存机制

前端技能树,面试复习第 38 天—— 浏览器原理:详解浏览器缓存机制 | 协商缓存与强缓存(重点)

前端性能优化 浏览器缓存技术

前端开发之优秀的WEB缓存策略!