三天吃透Redis面试八股文
Posted 程序员大彬
tags:
篇首语:本文由小常识网(cha138.com)小编为大家整理,主要介绍了三天吃透Redis面试八股文相关的知识,希望对你有一定的参考价值。
本文已经收录到Github仓库,该仓库包含计算机基础、Java基础、多线程、JVM、数据库、Redis、Spring、Mybatis、SpringMVC、SpringBoot、分布式、微服务、设计模式、架构、校招社招分享等核心知识点,欢迎star~
Github地址:https://github.com/Tyson0314/Java-learning
Redis是什么?
Redis(Remote Dictionary Server
)是一个使用 C 语言编写的,高性能非关系型的键值对数据库。与传统数据库不同的是,Redis 的数据是存在内存中的,所以读写速度非常快,被广泛应用于缓存方向。Redis可以将数据写入磁盘中,保证了数据的安全不丢失,而且Redis的操作是原子性的。
Redis优缺点?
优点:
- 基于内存操作,内存读写速度快。
- 支持多种数据类型,包括String、Hash、List、Set、ZSet等。
- 支持持久化。Redis支持RDB和AOF两种持久化机制,持久化功能可以有效地避免数据丢失问题。
- 支持事务。Redis的所有操作都是原子性的,同时Redis还支持对几个操作合并后的原子性执行。
- 支持主从复制。主节点会自动将数据同步到从节点,可以进行读写分离。
- Redis命令的处理是单线程的。Redis6.0引入了多线程,需要注意的是,多线程用于处理网络数据的读写和协议解析,Redis命令执行还是单线程的。
缺点:
- 对结构化查询的支持比较差。
- 数据库容量受到物理内存的限制,不适合用作海量数据的高性能读写,因此Redis适合的场景主要局限在较小数据量的操作。
- Redis 较难支持在线扩容,在集群容量达到上限时在线扩容会变得很复杂。
Redis为什么这么快?
- 基于内存:Redis是使用内存存储,没有磁盘IO上的开销。数据存在内存中,读写速度快。
- IO多路复用模型:Redis 采用 IO 多路复用技术。Redis 使用单线程来轮询描述符,将数据库的操作都转换成了事件,不在网络I/O上浪费过多的时间。
- 高效的数据结构:Redis 每种数据类型底层都做了优化,目的就是为了追求更快的速度。
讲讲Redis的线程模型?
Redis基于Reactor模式开发了网络事件处理器,这个处理器被称为文件事件处理器。它的组成结构为4部分:多个套接字、IO多路复用程序、文件事件分派器、事件处理器。因为文件事件分派器队列的消费是单线程的,所以Redis才叫单线程模型。
- 文件事件处理器使用I/O多路复用(multiplexing)程序来同时监听多个套接字, 并根据套接字目前执行的任务来为套接字关联不同的事件处理器。
- 当被监听的套接字准备好执行连接accept、read、write、close等操作时, 与操作相对应的文件事件就会产生, 这时文件事件处理器就会调用套接字之前关联好的事件处理器来处理这些事件。
虽然文件事件处理器以单线程方式运行, 但通过使用 I/O 多路复用程序来监听多个套接字, 文件事件处理器既实现了高性能的网络通信模型, 又可以很好地与 redis 服务器中其他同样以单线程方式运行的模块进行对接, 这保持了 Redis 内部单线程设计的简单性。
Redis应用场景有哪些?
- 缓存热点数据,缓解数据库的压力。
- 利用 Redis 原子性的自增操作,可以实现计数器的功能,比如统计用户点赞数、用户访问数等。
- 分布式锁。在分布式场景下,无法使用单机环境下的锁来对多个节点上的进程进行同步。可以使用 Redis 自带的 SETNX 命令实现分布式锁,除此之外,还可以使用官方提供的 RedLock 分布式锁实现。
- 简单的消息队列,可以使用Redis自身的发布/订阅模式或者List来实现简单的消息队列,实现异步操作。
- 限速器,可用于限制某个用户访问某个接口的频率,比如秒杀场景用于防止用户快速点击带来不必要的压力。
- 好友关系,利用集合的一些命令,比如交集、并集、差集等,实现共同好友、共同爱好之类的功能。
Memcached和Redis的区别?
- MemCached 数据结构单一,仅用来缓存数据,而 Redis 支持多种数据类型。
- MemCached 不支持数据持久化,重启后数据会消失。Redis 支持数据持久化。
- Redis 提供主从同步机制和 cluster 集群部署能力,能够提供高可用服务。Memcached 没有提供原生的集群模式,需要依靠客户端实现往集群中分片写入数据。
- Redis 的速度比 Memcached 快很多。
- Redis 使用单线程的多路 IO 复用模型,Memcached使用多线程的非阻塞 IO 模型。(Redis6.0引入了多线程IO,用来处理网络数据的读写和协议解析,但是命令的执行仍然是单线程)
- value 值大小不同:Redis 最大可以达到 512M;memcache 只有 1mb。
为什么要用 Redis 而不用 map/guava 做缓存?
使用自带的 map 或者 guava 实现的是本地缓存,最主要的特点是轻量以及快速,生命周期随着 jvm 的销毁而结束,并且在多实例的情况下,每个实例都需要各自保存一份缓存,缓存不具有一致性。
使用 redis 或 memcached 之类的称为分布式缓存,在多实例的情况下,各实例共用一份缓存数据,缓存具有一致性。
Redis 数据类型有哪些?
基本数据类型:
1、String:最常用的一种数据类型,String类型的值可以是字符串、数字或者二进制,但值最大不能超过512MB。
2、Hash:Hash 是一个键值对集合。
3、Set:无序去重的集合。Set 提供了交集、并集等方法,对于实现共同好友、共同关注等功能特别方便。
4、List:有序可重复的集合,底层是依赖双向链表实现的。
5、SortedSet:有序Set。内部维护了一个score
的参数来实现。适用于排行榜和带权重的消息队列等场景。
特殊的数据类型:
1、Bitmap:位图,可以认为是一个以位为单位数组,数组中的每个单元只能存0或者1,数组的下标在 Bitmap 中叫做偏移量。Bitmap的长度与集合中元素个数无关,而是与基数的上限有关。
2、Hyperloglog。HyperLogLog 是用来做基数统计的算法,其优点是,在输入元素的数量或者体积非常非常大时,计算基数所需的空间总是固定的、并且是很小的。典型的使用场景是统计独立访客。
3、Geospatial :主要用于存储地理位置信息,并对存储的信息进行操作,适用场景如定位、附近的人等。
本文已经收录到Github仓库,该仓库包含计算机基础、Java基础、多线程、JVM、数据库、Redis、Spring、Mybatis、SpringMVC、SpringBoot、分布式、微服务、设计模式、架构、校招社招分享等核心知识点,欢迎star~
Github地址:https://github.com/Tyson0314/Java-learning
SortedSet和List异同点?
相同点:
- 都是有序的;
- 都可以获得某个范围内的元素。
不同点:
- 列表基于链表实现,获取两端元素速度快,访问中间元素速度慢;
- 有序集合基于散列表和跳跃表实现,访问中间元素时间复杂度是OlogN;
- 列表不能简单的调整某个元素的位置,有序列表可以(更改元素的分数);
- 有序集合更耗内存。
Redis的内存用完了会怎样?
如果达到设置的上限,Redis的写命令会返回错误信息(但是读命令还可以正常返回)。
也可以配置内存淘汰机制,当Redis达到内存上限时会冲刷掉旧的内容。
Redis如何做内存优化?
可以好好利用Hash,list,sorted set,set等集合类型数据,因为通常情况下很多小的Key-Value可以用更紧凑的方式存放到一起。尽可能使用散列表(hashes),散列表(是说散列表里面存储的数少)使用的内存非常小,所以你应该尽可能的将你的数据模型抽象到一个散列表里面。比如你的web系统中有一个用户对象,不要为这个用户的名称,姓氏,邮箱,密码设置单独的key,而是应该把这个用户的所有信息存储到一张散列表里面。
keys命令存在的问题?
redis的单线程的。keys指令会导致线程阻塞一段时间,直到执行完毕,服务才能恢复。scan采用渐进式遍历的方式来解决keys命令可能带来的阻塞问题,每次scan命令的时间复杂度是O(1)
,但是要真正实现keys的功能,需要执行多次scan。
scan的缺点:在scan的过程中如果有键的变化(增加、删除、修改),遍历过程可能会有以下问题:新增的键可能没有遍历到,遍历出了重复的键等情况,也就是说scan并不能保证完整的遍历出来所有的键。
Redis事务
事务的原理是将一个事务范围内的若干命令发送给Redis,然后再让Redis依次执行这些命令。
事务的生命周期:
-
使用MULTI开启一个事务
-
在开启事务的时候,每次操作的命令将会被插入到一个队列中,同时这个命令并不会被真的执行
-
EXEC命令进行提交事务
一个事务范围内某个命令出错不会影响其他命令的执行,不保证原子性:
127.0.0.1:6379> multi
OK
127.0.0.1:6379> set a 1
QUEUED
127.0.0.1:6379> set b 1 2
QUEUED
127.0.0.1:6379> set c 3
QUEUED
127.0.0.1:6379> exec
1) OK
2) (error) ERR syntax error
3) OK
WATCH命令
WATCH
命令可以监控一个或多个键,一旦其中有一个键被修改,之后的事务就不会执行(类似于乐观锁)。执行EXEC
命令之后,就会自动取消监控。
127.0.0.1:6379> watch name
OK
127.0.0.1:6379> set name 1
OK
127.0.0.1:6379> multi
OK
127.0.0.1:6379> set name 2
QUEUED
127.0.0.1:6379> set gender 1
QUEUED
127.0.0.1:6379> exec
(nil)
127.0.0.1:6379> get gender
(nil)
比如上面的代码中:
watch name
开启了对name
这个key
的监控- 修改
name
的值 - 开启事务a
- 在事务a中设置了
name
和gender
的值 - 使用
EXEC
命令进提交事务 - 使用命令
get gender
发现不存在,即事务a没有执行
使用UNWATCH
可以取消WATCH
命令对key
的监控,所有监控锁将会被取消。
Redis事务支持隔离性吗?
Redis 是单进程程序,并且它保证在执行事务时,不会对事务进行中断,事务可以运行直到执行完所有事务队列中的命令为止。因此,Redis 的事务是总是带有隔离性的。
Redis事务保证原子性吗,支持回滚吗?
Redis单条命令是原子性执行的,但事务不保证原子性,且没有回滚。事务中任意命令执行失败,其余的命令仍会被执行。
持久化机制
持久化就是把内存的数据写到磁盘中,防止服务宕机导致内存数据丢失。
Redis支持两种方式的持久化,一种是RDB
的方式,一种是AOF
的方式。前者会根据指定的规则定时将内存中的数据存储在硬盘上,而后者在每次执行完命令后将命令记录下来。一般将两者结合使用。
RDB方式
RDB
是 Redis 默认的持久化方案。RDB持久化时会将内存中的数据写入到磁盘中,在指定目录下生成一个dump.rdb
文件。Redis 重启会加载dump.rdb
文件恢复数据。
bgsave
是主流的触发 RDB 持久化的方式,执行过程如下:
[外链图片转存失败,源站可能有防盗链机制,建议将图片保存下来直接上传(img-hWp4w5mw-1677677962923)(http://img.topjavaer.cn/img/rdb持久化过程.png)]
- 执行
BGSAVE
命令 - Redis 父进程判断当前是否存在正在执行的子进程,如果存在,
BGSAVE
命令直接返回。 - 父进程执行
fork
操作创建子进程,fork操作过程中父进程会阻塞。 - 父进程
fork
完成后,父进程继续接收并处理客户端的请求,而子进程开始将内存中的数据写进硬盘的临时文件; - 当子进程写完所有数据后会用该临时文件替换旧的 RDB 文件。
Redis启动时会读取RDB快照文件,将数据从硬盘载入内存。通过 RDB 方式的持久化,一旦Redis异常退出,就会丢失最近一次持久化以后更改的数据。
触发 RDB 持久化的方式:
-
手动触发:用户执行
SAVE
或BGSAVE
命令。SAVE
命令执行快照的过程会阻塞所有客户端的请求,应避免在生产环境使用此命令。BGSAVE
命令可以在后台异步进行快照操作,快照的同时服务器还可以继续响应客户端的请求,因此需要手动执行快照时推荐使用BGSAVE
命令。 -
被动触发:
- 根据配置规则进行自动快照,如
SAVE 100 10
,100秒内至少有10个键被修改则进行快照。 - 如果从节点执行全量复制操作,主节点会自动执行
BGSAVE
生成 RDB 文件并发送给从节点。 - 默认情况下执行
shutdown
命令时,如果没有开启 AOF 持久化功能则自动执行·BGSAVE·。
- 根据配置规则进行自动快照,如
优点:
- Redis 加载 RDB 恢复数据远远快于 AOF 的方式。
- 使用单独子进程来进行持久化,主进程不会进行任何 IO 操作,保证了 Redis 的高性能。
缺点:
- RDB方式数据无法做到实时持久化。因为
BGSAVE
每次运行都要执行fork
操作创建子进程,属于重量级操作,频繁执行成本比较高。 - RDB 文件使用特定二进制格式保存,Redis 版本升级过程中有多个格式的 RDB 版本,存在老版本 Redis 无法兼容新版 RDB 格式的问题。
AOF方式
AOF(append only file)持久化:以独立日志的方式记录每次写命令,Redis重启时会重新执行AOF文件中的命令达到恢复数据的目的。AOF的主要作用是解决了数据持久化的实时性,AOF 是Redis持久化的主流方式。
默认情况下Redis没有开启AOF方式的持久化,可以通过appendonly
参数启用:appendonly yes
。开启AOF方式持久化后每执行一条写命令,Redis就会将该命令写进aof_buf
缓冲区,AOF缓冲区根据对应的策略向硬盘做同步操作。
默认情况下系统每30秒会执行一次同步操作。为了防止缓冲区数据丢失,可以在Redis写入AOF文件后主动要求系统将缓冲区数据同步到硬盘上。可以通过appendfsync
参数设置同步的时机。
appendfsync always //每次写入aof文件都会执行同步,最安全最慢,不建议配置
appendfsync everysec //既保证性能也保证安全,建议配置
appendfsync no //由操作系统决定何时进行同步操作
接下来看一下 AOF 持久化执行流程:
[外链图片转存失败,源站可能有防盗链机制,建议将图片保存下来直接上传(img-6TP6bl9f-1677677962926)(http://img.topjavaer.cn/img/aof工作流程0.png)]
- 所有的写入命令会追加到 AOP 缓冲区中。
- AOF 缓冲区根据对应的策略向硬盘同步。
- 随着 AOF 文件越来越大,需要定期对 AOF 文件进行重写,达到压缩文件体积的目的。AOF文件重写是把Redis进程内的数据转化为写命令同步到新AOF文件的过程。
- 当 Redis 服务器重启时,可以加载 AOF 文件进行数据恢复。
优点:
- AOF可以更好的保护数据不丢失,可以配置 AOF 每秒执行一次
fsync
操作,如果Redis进程挂掉,最多丢失1秒的数据。 - AOF以
append-only
的模式写入,所以没有磁盘寻址的开销,写入性能非常高。
缺点:
- 对于同一份文件AOF文件比RDB数据快照要大。
- 数据恢复比较慢。
RDB和AOF如何选择?
通常来说,应该同时使用两种持久化方案,以保证数据安全。
- 如果数据不敏感,且可以从其他地方重新生成,可以关闭持久化。
- 如果数据比较重要,且能够承受几分钟的数据丢失,比如缓存等,只需要使用RDB即可。
- 如果是用做内存数据,要使用Redis的持久化,建议是RDB和AOF都开启。
- 如果只用AOF,优先使用everysec的配置选择,因为它在可靠性和性能之间取了一个平衡。
当RDB与AOF两种方式都开启时,Redis会优先使用AOF恢复数据,因为AOF保存的文件比RDB文件更完整。
Redis有哪些部署方案?
单机版:单机部署,单机redis能够承载的 QPS 大概就在上万到几万不等。这种部署方式很少使用。存在的问题:1、内存容量有限 2、处理能力有限 3、无法高可用。
主从模式:一主多从,主负责写,并且将数据复制到其它的 slave 节点,从节点负责读。所有的读请求全部走从节点。这样也可以很轻松实现水平扩容,支撑读高并发。master 节点挂掉后,需要手动指定新的 master,可用性不高,基本不用。
哨兵模式:主从复制存在不能自动故障转移、达不到高可用的问题。哨兵模式解决了这些问题。通过哨兵机制可以自动切换主从节点。master 节点挂掉后,哨兵进程会主动选举新的 master,可用性高,但是每个节点存储的数据是一样的,浪费内存空间。数据量不是很多,集群规模不是很大,需要自动容错容灾的时候使用。
Redis cluster:服务端分片技术,3.0版本开始正式提供。Redis Cluster并没有使用一致性hash,而是采用slot(槽)的概念,一共分成16384个槽。将请求发送到任意节点,接收到请求的节点会将查询请求发送到正确的节点上执行。主要是针对海量数据+高并发+高可用的场景,如果是海量数据,如果你的数据量很大,那么建议就用Redis cluster,所有主节点的容量总和就是Redis cluster可缓存的数据容量。
主从架构
单机的 redis,能够承载的 QPS 大概就在上万到几万不等。对于缓存来说,一般都是用来支撑读高并发的。因此架构做成主从(master-slave)架构,一主多从,主负责写,并且将数据复制到其它的 slave 节点,从节点负责读。所有的读请求全部走从节点。这样也可以很轻松实现水平扩容,支撑读高并发。
Redis的复制功能是支持多个数据库之间的数据同步。主数据库可以进行读写操作,当主数据库的数据发生变化时会自动将数据同步到从数据库。从数据库一般是只读的,它会接收主数据库同步过来的数据。一个主数据库可以有多个从数据库,而一个从数据库只能有一个主数据库。
主从复制的原理?
- 当启动一个从节点时,它会发送一个
PSYNC
命令给主节点; - 如果是从节点初次连接到主节点,那么会触发一次全量复制。此时主节点会启动一个后台线程,开始生成一份
RDB
快照文件; - 同时还会将从客户端 client 新收到的所有写命令缓存在内存中。
RDB
文件生成完毕后, 主节点会将RDB
文件发送给从节点,从节点会先将RDB
文件写入本地磁盘,然后再从本地磁盘加载到内存中; - 接着主节点会将内存中缓存的写命令发送到从节点,从节点同步这些数据;
- 如果从节点跟主节点之间网络出现故障,连接断开了,会自动重连,连接之后主节点仅会将部分缺失的数据同步给从节点。
哨兵Sentinel
主从复制存在不能自动故障转移、达不到高可用的问题。哨兵模式解决了这些问题。通过哨兵机制可以自动切换主从节点。
客户端连接Redis的时候,先连接哨兵,哨兵会告诉客户端Redis主节点的地址,然后客户端连接上Redis并进行后续的操作。当主节点宕机的时候,哨兵监测到主节点宕机,会重新推选出某个表现良好的从节点成为新的主节点,然后通过发布订阅模式通知其他的从服务器,让它们切换主机。
工作原理
- 每个
Sentinel
以每秒钟一次的频率向它所知道的Master
,Slave
以及其他Sentinel
实例发送一个PING
命令。 - 如果一个实例距离最后一次有效回复
PING
命令的时间超过指定值, 则这个实例会被Sentine
标记为主观下线。 - 如果一个
Master
被标记为主观下线,则正在监视这个Master
的所有Sentinel
要以每秒一次的频率确认Master
是否真正进入主观下线状态。 - 当有足够数量的
Sentinel
(大于等于配置文件指定值)在指定的时间范围内确认Master
的确进入了主观下线状态, 则Master
会被标记为客观下线 。若没有足够数量的Sentinel
同意Master
已经下线,Master
的客观下线状态就会被解除。 若Master
重新向Sentinel
的PING
命令返回有效回复,Master
的主观下线状态就会被移除。 - 哨兵节点会选举出哨兵 leader,负责故障转移的工作。
- 哨兵 leader 会推选出某个表现良好的从节点成为新的主节点,然后通知其他从节点更新主节点信息。
Redis cluster
哨兵模式解决了主从复制不能自动故障转移、达不到高可用的问题,但还是存在主节点的写能力、容量受限于单机配置的问题。而cluster模式实现了Redis的分布式存储,每个节点存储不同的内容,解决主节点的写能力、容量受限于单机配置的问题。
Redis cluster集群节点最小配置6个节点以上(3主3从),其中主节点提供读写操作,从节点作为备用节点,不提供请求,只作为故障转移使用。
Redis cluster采用虚拟槽分区,所有的键根据哈希函数映射到0~16383个整数槽内,每个节点负责维护一部分槽以及槽所映射的键值数据。
工作原理:
- 通过哈希的方式,将数据分片,每个节点均分存储一定哈希槽(哈希值)区间的数据,默认分配了16384 个槽位
- 每份数据分片会存储在多个互为主从的多节点上
- 数据写入先写主节点,再同步到从节点(支持配置为阻塞同步)
- 同一分片多个节点间的数据不保持一致性
- 读取数据时,当客户端操作的key没有分配在该节点上时,redis会返回转向指令,指向正确的节点
- 扩容时时需要需要把旧节点的数据迁移一部分到新节点
在 redis cluster 架构下,每个 redis 要放开两个端口号,比如一个是 6379,另外一个就是 加1w 的端口号,比如 16379。
16379 端口号是用来进行节点间通信的,也就是 cluster bus 的东西,cluster bus 的通信,用来进行故障检测、配置更新、故障转移授权。cluster bus 用了另外一种二进制的协议,gossip
协议,用于节点间进行高效的数据交换,占用更少的网络带宽和处理时间。
优点:
- 无中心架构,支持动态扩容;
- 数据按照
slot
存储分布在多个节点,节点间数据共享,可动态调整数据分布; - 高可用性。部分节点不可用时,集群仍可用。集群模式能够实现自动故障转移(failover),节点之间通过
gossip
协议交换状态信息,用投票机制完成Slave
到Master
的角色转换。
缺点:
- 不支持批量操作(pipeline)。
- 数据通过异步复制,不保证数据的强一致性。
- 事务操作支持有限,只支持多
key
在同一节点上的事务操作,当多个key
分布于不同的节点上时无法使用事务功能。 key
作为数据分区的最小粒度,不能将一个很大的键值对象如hash
、list
等映射到不同的节点。- 不支持多数据库空间,单机下的Redis可以支持到16个数据库,集群模式下只能使用1个数据库空间。
- 只能使用0号数据库。
哈希分区算法有哪些?
节点取余分区。使用特定的数据,如Redis的键或用户ID,对节点数量N取余:hash(key)%N计算出哈希值,用来决定数据映射到哪一个节点上。
优点是简单性。扩容时通常采用翻倍扩容,避免数据映射全部被打乱导致全量迁移的情况。
一致性哈希分区。为系统中每个节点分配一个token,范围一般在0~232,这些token构成一个哈希环。数据读写执行节点查找操作时,先根据key计算hash值,然后顺时针找到第一个大于等于该哈希值的token节点。
这种方式相比节点取余最大的好处在于加入和删除节点只影响哈希环中相邻的节点,对其他节点无影响。
虚拟槽分区,所有的键根据哈希函数映射到0~16383整数槽内,计算公式:slot=CRC16(key)&16383。每一个节点负责维护一部分槽以及槽所映射的键值数据。Redis Cluser采用虚拟槽分区算法。
过期键的删除策略?
1、被动删除。在访问key时,如果发现key已经过期,那么会将key删除。
2、主动删除。定时清理key,每次清理会依次遍历所有DB,从db随机取出20个key,如果过期就删除,如果其中有5个key过期,那么就继续对这个db进行清理,否则开始清理下一个db。
3、内存不够时清理。Redis有最大内存的限制,通过maxmemory参数可以设置最大内存,当使用的内存超过了设置的最大内存,就要进行内存释放, 在进行内存释放的时候,会按照配置的淘汰策略清理内存。
内存淘汰策略有哪些?
当Redis的内存超过最大允许的内存之后,Redis 会触发内存淘汰策略,删除一些不常用的数据,以保证Redis服务器正常运行。
Redisv4.0前提供 6 种数据淘汰策略:
- volatile-lru:LRU(
Least Recently Used
),最近使用。利用LRU算法移除设置了过期时间的key - allkeys-lru:当内存不足以容纳新写入数据时,从数据集中移除最近最少使用的key
- volatile-ttl:从已设置过期时间的数据集中挑选将要过期的数据淘汰
- volatile-random:从已设置过期时间的数据集中任意选择数据淘汰
- allkeys-random:从数据集中任意选择数据淘汰
- no-eviction:禁止删除数据,当内存不足以容纳新写入数据时,新写入操作会报错
Redisv4.0后增加以下两种:
- volatile-lfu:LFU,Least Frequently Used,最少使用,从已设置过期时间的数据集中挑选最不经常使用的数据淘汰。
- allkeys-lfu:当内存不足以容纳新写入数据时,从数据集中移除最不经常使用的key。
内存淘汰策略可以通过配置文件来修改,相应的配置项是maxmemory-policy
,默认配置是noeviction
。
如何保证缓存与数据库双写时的数据一致性?
1、先删除缓存再更新数据库
进行更新操作时,先删除缓存,然后更新数据库,后续的请求再次读取时,会从数据库读取后再将新数据更新到缓存。
存在的问题:删除缓存数据之后,更新数据库完成之前,这个时间段内如果有新的读请求过来,就会从数据库读取旧数据重新写到缓存中,再次造成不一致,并且后续读的都是旧数据。
2、先更新数据库再删除缓存
进行更新操作时,先更新mysql,成功之后,删除缓存,后续读取请求时再将新数据回写缓存。
存在的问题:更新MySQL和删除缓存这段时间内,请求读取的还是缓存的旧数据,不过等数据库更新完成,就会恢复一致,影响相对比较小。
3、异步更新缓存
数据库的更新操作完成后不直接操作缓存,而是把这个操作命令封装成消息扔到消息队列中,然后由Redis自己去消费更新数据,消息队列可以保证数据操作顺序一致性,确保缓存系统的数据正常。
以上几个方案都不完美,需要根据业务需求,评估哪种方案影响较小,然后选择相应的方案。
缓存常见问题
缓存穿透
缓存穿透是指查询一个不存在的数据,由于缓存是不命中时被动写的,如果从DB查不到数据则不写入缓存,这将导致这个不存在的数据每次请求都要到DB去查询,失去了缓存的意义。在流量大时,可能DB就挂掉了。
怎么解决?
- 缓存空值,不会查数据库。
- 采用布隆过滤器,将所有可能存在的数据哈希到一个足够大的
bitmap
中,查询不存在的数据会被这个bitmap
拦截掉,从而避免了对DB
的查询压力。
布隆过滤器的原理:当一个元素被加入集合时,通过K个哈希函数将这个元素映射成一个位数组中的K个点,把它们置为1。查询时,将元素通过哈希函数映射之后会得到k个点,如果这些点有任何一个0,则被检元素一定不在,直接返回;如果都是1,则查询元素很可能存在,就会去查询Redis和数据库。
布隆过滤器一般用于在大数据量的集合中判定某元素是否存在。
缓存雪崩
缓存雪崩是指在我们设置缓存时采用了相同的过期时间,导致缓存在某一时刻同时失效,请求全部转发到DB,DB瞬时压力过重挂掉。
解决方法:
- 在原有的失效时间基础上增加一个随机值,使得过期时间分散一些。这样每一个缓存的过期时间的重复率就会降低,就很难引发集体失效的事件。
- 加锁排队可以起到缓冲的作用,防止大量的请求同时操作数据库,但它的缺点是增加了系统的响应时间,降低了系统的吞吐量,牺牲了一部分用户体验。当缓存未查询到时,对要请求的 key 进行加锁,只允许一个线程去数据库中查,其他线程等候排队。
- 设置二级缓存。二级缓存指的是除了 Redis 本身的缓存,再设置一层缓存,当 Redis 失效之后,先去查询二级缓存。例如可以设置一个本地缓存,在 Redis 缓存失效的时候先去查询本地缓存而非查询数据库。
缓存击穿
缓存击穿:大量的请求同时查询一个 key 时,此时这个 key 正好失效了,就会导致大量的请求都落到数据库。缓存击穿是查询缓存中失效的 key,而缓存穿透是查询不存在的 key。
解决方法:
1、加互斥锁。在并发的多个请求中,只有第一个请求线程能拿到锁并执行数据库查询操作,其他的线程拿不到锁就阻塞等着,等到第一个线程将数据写入缓存后,直接走缓存。可以使用Redis分布式锁实现,代码如下:
public String get(String key)
String value = redis.get(key);
if (value == null) //缓存值过期
String unique_key = systemId + ":" + key;
//设置30s的超时
if (redis.set(unique_key, 1, 'NX', 'PX', 30000) == 1) //设置成功
value = db.get(key);
redis.set(key, value, expire_secs);
redis.del(unique_key);
else //其他线程已经到数据库取值并回写到缓存了,可以重试获取缓存值
sleep(50);
get(key); //重试
else
return value;
2、热点数据不过期。直接将缓存设置为不过期,然后由定时任务去异步加载数据,更新缓存。这种方式适用于比较极端的场景,例如流量特别特别大的场景,使用时需要考虑业务能接受数据不一致的时间,还有就是异常情况的处理,保证缓存可以定时刷新。
缓存预热
缓存预热就是系统上线后,将相关的缓存数据直接加载到缓存系统。这样就可以避免在用户请求的时候,先查询数据库,然后再将数据缓存的问题!用户直接查询事先被预热的缓存数据!
解决方案:
- 直接写个缓存刷新页面,上线时手工操作一下;
- 数据量不大,可以在项目启动的时候自动进行加载;
- 定时刷新缓存;
缓存降级
当访问量剧增、服务出现问题(如响应时间慢或不响应)或非核心服务影响到核心流程的性能时,仍然需要保证服务还是可用的,即使是有损服务。系统可以根据一些关键数据进行自动降级,也可以配置开关实现人工降级。
缓存降级的最终目的是保证核心服务可用,即使是有损的。而且有些服务是无法降级的(如加入购物车、结算)。
在进行降级之前要对系统进行梳理,看看系统是不是可以丢卒保帅;从而梳理出哪些必须誓死保护,哪些可降级;比如可以参考日志级别设置预案:
- 一般:比如有些服务偶尔因为网络抖动或者服务正在上线而超时,可以自动降级;
- 警告:有些服务在一段时间内成功率有波动(如在95~100%之间),可以自动降级或人工降级,并发送告警;
- 错误:比如可用率低于90%,或者数据库连接池被打爆了,或者访问量突然猛增到系统能承受的最大阀值,此时可以根据情况自动降级或者人工降级;
- 严重错误:比如因为特殊原因数据错误了,此时需要紧急人工降级。
服务降级的目的,是为了防止Redis服务故障,导致数据库跟着一起发生雪崩问题。因此,对于不重要的缓存数据,可以采取服务降级策略,例如一个比较常见的做法就是,Redis出现问题,不去数据库查询,而是直接返回默认值给用户。
Redis 怎么实现消息队列?
使用list类型保存数据信息,rpush生产消息,lpop消费消息,当lpop没有消息时,可以sleep一段时间,然后再检查有没有信息,如果不想sleep的话,可以使用blpop, 在没有信息的时候,会一直阻塞,直到信息的到来。
BLPOP queue 0 //0表示不限制等待时间
BLPOP和LPOP命令相似,唯一的区别就是当列表没有元素时BLPOP命令会一直阻塞连接,直到有新元素加入。
redis可以通过pub/sub主题订阅模式实现一个生产者,多个消费者,当然也存在一定的缺点,当消费者下线时,生产的消息会丢失。
PUBLISH channel1 hi
SUBSCRIBE channel1
UNSUBSCRIBE channel1 //退订通过SUBSCRIBE命令订阅的频道。
PSUBSCRIBE channel?*
按照规则订阅。
PUNSUBSCRIBE channel?*
退订通过PSUBSCRIBE命令按照某种规则订阅的频道。其中订阅规则要进行严格的字符串匹配,PUNSUBSCRIBE *
无法退订channel?*
规则。
Redis 怎么实现延时队列
使用sortedset,拿时间戳作为score,消息内容作为key,调用zadd来生产消息,消费者用zrangebyscore
指令获取N秒之前的数据轮询进行处理。
pipeline的作用?
redis客户端执行一条命令分4个过程: 发送命令、命令排队、命令执行、返回结果。使用pipeline
可以批量请求,批量返回结果,执行速度比逐条执行要快。
使用pipeline
组装的命令个数不能太多,不然数据量过大,增加客户端的等待时间,还可能造成网络阻塞,可以将大量命令的拆分多个小的pipeline
命令完成。
原生批命令(mset和mget)与pipeline
对比:
-
原生批命令是原子性,
pipeline
是非原子性。pipeline命令中途异常退出,之前执行成功的命令不会回滚。 -
原生批命令只有一个命令,但
pipeline
支持多命令。
LUA脚本
Redis 通过 LUA 脚本创建具有原子性的命令: 当lua脚本命令正在运行的时候,不会有其他脚本或 Redis 命令被执行,实现组合命令的原子操作。
在Redis中执行Lua脚本有两种方法:eval
和evalsha
。eval
命令使用内置的 Lua 解释器,对 Lua 脚本进行求值。
//第一个参数是lua脚本,第二个参数是键名参数个数,剩下的是键名参数和附加参数
> eval "return KEYS[1],KEYS[2],ARGV[1],ARGV[2]" 2 key1 key2 first second
1) "key1"
2) "key2"
3) "first"
4) "second"
lua脚本作用
1、Lua脚本在Redis中是原子执行的,执行过程中间不会插入其他命令。
2、Lua脚本可以将多条命令一次性打包,有效地减少网络开销。
应用场景
举例:限制接口访问频率。
在Redis维护一个接口访问次数的键值对,key
是接口名称,value
是访问次数。每次访问接口时,会执行以下操作:
- 通过
aop
拦截接口的请求,对接口请求进行计数,每次进来一个请求,相应的接口访问次数count
加1,存入redis。 - 如果是第一次请求,则会设置
count=1
,并设置过期时间。因为这里set()
和expire()
组合操作不是原子操作,所以引入lua
脚本,实现原子操作,避免并发访问问题。 - 如果给定时间范围内超过最大访问次数,则会抛出异常。
private String buildLuaScript()
return "local c" +
"\\nc = redis.call('get',KEYS[1])" +
"\\nif c and tonumber(c) > tonumber(ARGV[1]) then" +
"\\nreturn c;" +
"\\nend" +
"\\nc = redis.call('incr',KEYS[1])" +
"\\nif tonumber(c) == 1 then" +
"\\nredis.call('expire',KEYS[1],ARGV[2])" +
"\\nend" +
"\\nreturn c;";
String luaScript = buildLuaScript();
RedisScript<Number> redisScript = new DefaultRedisScript<>(luaScript, Number.class);
Number count = redisTemplate.execute(redisScript, keys, limit.count(), limit.period());
PS:这种接口限流的实现方式比较简单,问题也比较多,一般不会使用,接口限流用的比较多的是令牌桶算法和漏桶算法。
什么是RedLock?
Redis 官方站提出了一种权威的基于 Redis 实现分布式锁的方式名叫 Redlock,此种方式比原先的单节点的方法更安全。它可以保证以下特性:
- 安全特性:互斥访问,即永远只有一个 client 能拿到锁
- 避免死锁:最终 client 都可能拿到锁,不会出现死锁的情况,即使原本锁住某资源的 client 挂掉了
- 容错性:只要大部分 Redis 节点存活就可以正常提供服务
Redis大key怎么处理?
通常我们会将含有较大数据或含有大量成员、列表数的Key称之为大Key。
以下是对各个数据类型大key的描述:
- value是STRING类型,它的值超过5MB
- value是ZSET、Hash、List、Set等集合类型时,它的成员数量超过1w个
上述的定义并不绝对,主要是根据value的成员数量和大小来确定,根据业务场景确定标准。
怎么处理:
- 当vaule是string时,可以使用序列化、压缩算法将key的大小控制在合理范围内,但是序列化和反序列化都会带来更多时间上的消耗。或者将key进行拆分,一个大key分为不同的部分,记录每个部分的key,使用multiget等操作实现事务读取。
- 当value是list/set等集合类型时,根据预估的数据规模来进行分片,不同的元素计算后分到不同的片。
Redis常见性能问题和解决方案?
- Master最好不要做任何持久化工作,包括内存快照和AOF日志文件,特别是不要启用内存快照做持久化。
- 如果数据比较关键,某个Slave开启AOF备份数据,策略为每秒同步一次。
- 为了主从复制的速度和连接的稳定性,Slave和Master最好在同一个局域网内。
- 尽量避免在压力较大的主库上增加从库
- Master调用BGREWRITEAOF重写AOF文件,AOF在重写的时候会占大量的CPU和内存资源,导致服务load过高,出现短暂服务暂停现象。
- 为了Master的稳定性,主从复制不要用图状结构,用单向链表结构更稳定,即主从关系为:Master<–Slave1<–Slave2<–Slave3…,这样的结构也方便解决单点故障问题,实现Slave对Master的替换,也即,如果Master挂了,可以立马启用Slave1做Master,其他不变。
说说为什么Redis过期了为什么内存没释放?
第一种情况,可能是覆盖之前的key,导致key过期时间发生了改变。
当一个key在Redis中已经存在了,但是由于一些误操作使得key过期时间发生了改变,从而导致这个key在应该过期的时间内并没有过期,从而造成内存的占用。
第二种情况是,Redis过期key的处理策略导致内存没释放。
一般Redis对过期key的处理策略有两种:惰性删除和定时删除。
先说惰性删除的情况
当一个key已经确定设置了xx秒过期同时中间也没有修改它,xx秒之后它确实已经过期了,但是惰性删除的策略它并不会马上删除这个key,而是当再次读写这个key时它才会去检查是否过期,如果过期了就会删除这个key。也就是说,惰性删除策略下,就算key过期了,也不会立刻释放内容,要等到下一次读写这个key才会删除key。
而定时删除会在一定时间内主动淘汰一部分已经过期的数据,默认的时间是每100ms过期一次。因为定时删除策略每次只会淘汰一部分过期key,而不是所有的过期key,如果redis中数据比较多的话要是一次性全量删除对服务器的压力比较大,每一次只挑一批进行删除,所以很可能出现部分已经过期的key并没有及时的被清理掉,从而导致内存没有即时被释放。
Redis突然变慢,有哪些原因?
-
存在bigkey。如果Redis实例中存储了 bigkey,那么在淘汰删除 bigkey 释放内存时,也会耗时比较久。应该避免存储 bigkey,降低释放内存的耗时。
-
如果Redis 实例设置了内存上限 maxmemory,有可能导致 Redis 变慢。当 Redis 内存达到 maxmemory 后,每次写入新的数据之前,Redis 必须先从实例中踢出一部分数据,让整个实例的内存维持在 maxmemory 之下,然后才能把新数据写进来。
-
开启了内存大页。当 Redis 在执行后台 RDB 和 AOF rewrite 时,采用 fork 子进程的方式来处理。但主进程 fork 子进程后,此时的主进程依旧是可以接收写请求的,而进来的写请求,会采用 Copy On Write(写时复制)的方式操作内存数据。
什么是写时复制?
这样做的好处是,父进程有任何写操作,并不会影响子进程的数据持久化。
不过,主进程在拷贝内存数据时,会涉及到新内存的申请,如果此时操作系统开启了内存大页,那么在此期间,客户端即便只修改 10B 的数据,Redis 在申请内存时也会以 2MB 为单位向操作系统申请,申请内存的耗时变长,进而导致每个写请求的延迟增加,影响到 Redis 性能。
解决方案就是关闭内存大页机制。
-
使用了Swap。操作系统为了缓解内存不足对应用程序的影响,允许把一部分内存中的数据换到磁盘上,以达到应用程序对内存使用的缓冲,这些内存数据被换到磁盘上的区域,就是 Swap。当内存中的数据被换到磁盘上后,Redis 再访问这些数据时,就需要从磁盘上读取,访问磁盘的速度要比访问内存慢几百倍。尤其是针对 Redis 这种对性能要求极高、性能极其敏感的数据库来说,这个操作延时是无法接受的。解决方案就是增加机器的内存,让 Redis 有足够的内存可以使用。或者整理内存空间,释放出足够的内存供 Redis 使用
-
网络带宽过载。网络带宽过载的情况下,服务器在 TCP 层和网络层就会出现数据包发送延迟、丢包等情况。Redis 的高性能,除了操作内存之外,就在于网络 IO 了,如果网络 IO 存在瓶颈,那么也会严重影响 Redis 的性能。解决方案:1、及时确认占满网络带宽 Redis 实例,如果属于正常的业务访问,那就需要及时扩容或迁移实例了,避免因为这个实例流量过大,影响这个机器的其他实例。
三天吃透MySQL面试八股文
本文已经收录到Github仓库,该仓库包含计算机基础、Java基础、多线程、JVM、数据库、Redis、Spring、Mybatis、SpringMVC、SpringBoot、分布式、微服务、设计模式、架构、校招社招分享等核心知识点,欢迎star~
Github地址:https://github.com/Tyson0314/Java-learning
事务的四大特性?
事务特性ACID:原子性(
Atomicity
)、一致性(Consistency
)、隔离性(Isolation
)、持久性(Durability
)。- 原子性是指事务包含的所有操作要么全部成功,要么全部失败回滚。
- 一致性是指一个事务执行之前和执行之后都必须处于一致性状态。比如a与b账户共有1000块,两人之间转账之后无论成功还是失败,它们的账户总和还是1000。
- 隔离性。跟隔离级别相关,如
read committed
,一个事务只能读到已经提交的修改。 - 持久性是指一个事务一旦被提交了,那么对数据库中的数据的改变就是永久性的,即便是在数据库系统遇到故障的情况下也不会丢失提交事务的操作。
数据库的三大范式
第一范式1NF
确保数据库表字段的原子性。
比如字段
userInfo
:广东省 10086'
,依照第一范式必须拆分成userInfo
:广东省
userTel
:10086
两个字段。第二范式2NF
首先要满足第一范式,另外包含两部分内容,一是表必须有一个主键;二是非主键列必须完全依赖于主键,而不能只依赖于主键的一部分。
举个例子。假定选课关系表为
student_course
(student_no, student_name, age, course_name, grade, credit),主键为(student_no, course_name)。其中学分完全依赖于课程名称,姓名年龄完全依赖学号,不符合第二范式,会导致数据冗余(学生选n门课,姓名年龄有n条记录)、插入异常(插入一门新课,因为没有学号,无法保存新课记录)等问题。应该拆分成三个表:学生:
student
(stuent_no, student_name, 年龄);课程:course
(course_name, credit);选课关系:student_course_relation
(student_no, course_name, grade)。第三范式3NF
首先要满足第二范式,另外非主键列必须直接依赖于主键,不能存在传递依赖。即不能存在:非主键列 A 依赖于非主键列 B,非主键列 B 依赖于主键的情况。
假定学生关系表为Student(student_no, student_name, age, academy_id, academy_telephone),主键为"学号",其中学院id依赖于学号,而学院地点和学院电话依赖于学院id,存在传递依赖,不符合第三范式。
可以把学生关系表分为如下两个表:学生:(student_no, student_name, age, academy_id);学院:(academy_id, academy_telephone)。
2NF和3NF的区别?
- 2NF依据是非主键列是否完全依赖于主键,还是依赖于主键的一部分。
- 3NF依据是非主键列是直接依赖于主键,还是直接依赖于非主键。
事务隔离级别有哪些?
先了解下几个概念:脏读、不可重复读、幻读。
- 脏读是指在一个事务处理过程里读取了另一个未提交的事务中的数据。
- 不可重复读是指在对于数据库中的某行记录,一个事务范围内多次查询却返回了不同的数据值,这是由于在查询间隔,另一个事务修改了数据并提交了。
- 幻读是当某个事务在读取某个范围内的记录时,另外一个事务又在该范围内插入了新的记录。对幻读的正确理解是一个事务内的读取操作的结论不能支撑之后业务的执行。假设事务要新增一条记录,主键为id,在新增之前执行了select,没有发现id为xxx的记录,但插入时出现主键冲突,这就属于幻读,读取不到记录却发现主键冲突是因为记录实际上已经被其他的事务插入了,但当前事务不可见。
不可重复读和脏读的区别是,脏读是某一事务读取了另一个事务未提交的脏数据,而不可重复读则是读取了前一事务提交的数据。
事务隔离就是为了解决上面提到的脏读、不可重复读、幻读这几个问题。
MySQL数据库为我们提供的四种隔离级别:
- Serializable (串行化):通过强制事务排序,使之不可能相互冲突,从而解决幻读问题。
- Repeatable read (可重复读):MySQL的默认事务隔离级别,它确保同一事务的多个实例在并发读取数据时,会看到同样的数据行,解决了不可重复读的问题。
- Read committed (读已提交):一个事务只能看见已经提交事务所做的改变。可避免脏读的发生。
- Read uncommitted (读未提交):所有事务都可以看到其他未提交事务的执行结果。
查看隔离级别:
select @@transaction_isolation;
设置隔离级别:
set session transaction isolation level read uncommitted;
生产环境数据库一般用的什么隔离级别呢?
生产环境大多使用RC。为什么不是RR呢?
可重复读(Repeatable Read),简称为RR
读已提交(Read Commited),简称为RC缘由一:在RR隔离级别下,存在间隙锁,导致出现死锁的几率比RC大的多!
缘由二:在RR隔离级别下,条件列未命中索引会锁表!而在RC隔离级别下,只锁行!也就是说,RC的并发性高于RR。
并且大部分场景下,不可重复读问题是可以接受的。毕竟数据都已经提交了,读出来本身就没有太大问题!
编码和字符集的关系
我们平时可以在编辑器上输入各种中文英文字母,但这些都是给人读的,不是给计算机读的,其实计算机真正保存和传输数据都是以二进制0101的格式进行的。
那么就需要有一个规则,把中文和英文字母转化为二进制。其中d对应十六进制下的64,它可以转换为01二进制的格式。于是字母和数字就这样一一对应起来了,这就是ASCII编码格式。
它用一个字节,也就是
8位
来标识字符,基础符号有128个,扩展符号也是128个。也就只能表示下英文字母和数字。这明显不够用。于是,为了标识中文,出现了GB2312的编码格式。为了标识希腊语,出现了greek编码格式,为了标识俄语,整了cp866编码格式。
为了统一它们,于是出现了Unicode编码格式,它用了2~4个字节来表示字符,这样理论上所有符号都能被收录进去,并且它还完全兼容ASCII的编码,也就是说,同样是字母d,在ASCII用64表示,在Unicode里还是用64来表示。
但不同的地方是ASCII编码用1个字节来表示,而Unicode用则两个字节来表示。
同样都是字母d,unicode比ascii多使用了一个字节,如下:
D ASCII: 01100100 D Unicode: 00000000 01100100
可以看到,上面的unicode编码,前面的都是0,其实用不上,但还占了个字节,有点浪费。如果我们能做到该隐藏时隐藏,这样就能省下不少空间,按这个思路,就是就有了UTF-8编码。
总结一下,按照一定规则把符号和二进制码对应起来,这就是编码。而把n多这种已经编码的字符聚在一起,就是我们常说的字符集。
比如utf-8字符集就是所有utf-8编码格式的字符的合集。
想看下mysql支持哪些字符集。可以执行
show charset;
utf8和utf8mb4的区别
上面提到utf-8是在unicode的基础上做的优化,既然unicode有办法表示所有字符,那utf-8也一样可以表示所有字符,为了避免混淆,我在后面叫它大utf8。
mysql支持的字符集中有utf8和utf8mb4。
先说utf8mb4编码,mb4就是most bytes 4的意思,从上图最右边的
Maxlen
可以看到,它最大支持用4个字节来表示字符,它几乎可以用来表示目前已知的所有的字符。再说mysql字符集里的utf8,它是数据库的默认字符集。但注意,此utf8非彼utf8,我们叫它小utf8字符集。为什么这么说,因为从Maxlen可以看出,它最多支持用3个字节去表示字符,按utf8mb4的命名方式,准确点应该叫它utf8mb3。
utf8 就像是阉割版的utf8mb4,只支持部分字符。比如
emoji
表情,它就不支持。而mysql支持的字符集里,第三列,collation,它是指字符集的比较规则。
比如,"debug"和"Debug"是同一个单词,但它们大小写不同,该不该判为同一个单词呢。
这时候就需要用到collation了。
通过
SHOW COLLATION WHERE Charset = 'utf8mb4';
可以查看到utf8mb4
下支持什么比较规则。如果
collation = utf8mb4_general_ci
,是指使用utf8mb4字符集的前提下,挨个字符进行比较(general
),并且不区分大小写(_ci,case insensitice
)。这种情况下,"debug"和"Debug"是同一个单词。
如果改成
collation=utf8mb4_bin
,就是指挨个比较二进制位大小。于是"debug"和"Debug"就不是同一个单词。
那utf8mb4对比utf8有什么劣势吗?
我们知道数据库表里,字段类型如果是
char(2)
的话,里面的2
是指字符个数,也就是说不管这张表用的是什么编码的字符集,都能放上2个字符。而char又是固定长度,为了能放下2个utf8mb4的字符,char会默认保留
2*4(maxlen=4)= 8
个字节的空间。如果是utf8mb3,则会默认保留
2 * 3 (maxlen=3) = 6
个字节的空间。也就是说,在这种情况下,utf8mb4会比utf8mb3多使用一些空间。索引
什么是索引?
索引是存储引擎用于提高数据库表的访问速度的一种数据结构。它可以比作一本字典的目录,可以帮你快速找到对应的记录。
索引一般存储在磁盘的文件中,它是占用物理空间的。
索引的优缺点?
优点:
- 加快数据查找的速度
- 为用来排序或者是分组的字段添加索引,可以加快分组和排序的速度
- 加快表与表之间的连接
缺点:
- 建立索引需要占用物理空间
- 会降低表的增删改的效率,因为每次对表记录进行增删改,需要进行动态维护索引,导致增删改时间变长
索引的作用?
数据是存储在磁盘上的,查询数据时,如果没有索引,会加载所有的数据到内存,依次进行检索,读取磁盘次数较多。有了索引,就不需要加载所有数据,因为B+树的高度一般在2-4层,最多只需要读取2-4次磁盘,查询速度大大提升。
什么情况下需要建索引?
- 经常用于查询的字段
- 经常用于连接的字段建立索引,可以加快连接的速度
- 经常需要排序的字段建立索引,因为索引已经排好序,可以加快排序查询速度
什么情况下不建索引?
where
条件中用不到的字段不适合建立索引- 表记录较少。比如只有几百条数据,没必要加索引。
- 需要经常增删改。需要评估是否适合加索引
- 参与列计算的列不适合建索引
- 区分度不高的字段不适合建立索引,如性别,只有男/女/未知三个值。加了索引,查询效率也不会提高。
索引的数据结构
索引的数据结构主要有B+树和哈希表,对应的索引分别为B+树索引和哈希索引。InnoDB引擎的索引类型有B+树索引和哈希索引,默认的索引类型为B+树索引。
B+树索引
B+ 树是基于B 树和叶子节点顺序访问指针进行实现,它具有B树的平衡性,并且通过顺序访问指针来提高区间查询的性能。
在 B+ 树中,节点中的
key
从左到右递增排列,如果某个指针的左右相邻key
分别是 keyi 和 keyi+1,则该指针指向节点的所有key
大于等于 keyi 且小于等于 keyi+1。[外链图片转存失败,源站可能有防盗链机制,建议将图片保存下来直接上传(img-Z7Y5RZfr-1678522727946)(http://img.topjavaer.cn/img/B+树索引0.png)]
进行查找操作时,首先在根节点进行二分查找,找到
key
所在的指针,然后递归地在指针所指向的节点进行查找。直到查找到叶子节点,然后在叶子节点上进行二分查找,找出key
所对应的数据项。MySQL 数据库使用最多的索引类型是
BTREE
索引,底层基于B+树数据结构来实现。mysql> show index from blog\\G; *************************** 1. row *************************** Table: blog Non_unique: 0 Key_name: PRIMARY Seq_in_index: 1 Column_name: blog_id Collation: A Cardinality: 4 Sub_part: NULL Packed: NULL Null: Index_type: BTREE Comment: Index_comment: Visible: YES Expression: NULL
哈希索引
哈希索引是基于哈希表实现的,对于每一行数据,存储引擎会对索引列进行哈希计算得到哈希码,并且哈希算法要尽量保证不同的列值计算出的哈希码值是不同的,将哈希码的值作为哈希表的key值,将指向数据行的指针作为哈希表的value值。这样查找一个数据的时间复杂度就是O(1),一般多用于精确查找。
Hash索引和B+树索引的区别?
- 哈希索引不支持排序,因为哈希表是无序的。
- 哈希索引不支持范围查找。
- 哈希索引不支持模糊查询及多列索引的最左前缀匹配。
- 因为哈希表中会存在哈希冲突,所以哈希索引的性能是不稳定的,而B+树索引的性能是相对稳定的,每次查询都是从根节点到叶子节点。
为什么B+树比B树更适合实现数据库索引?
-
由于B+树的数据都存储在叶子结点中,叶子结点均为索引,方便扫库,只需要扫一遍叶子结点即可,但是B树因为其分支结点同样存储着数据,我们要找到具体的数据,需要进行一次中序遍历按序来扫,所以B+树更加适合在区间查询的情况,而在数据库中基于范围的查询是非常频繁的,所以通常B+树用于数据库索引。
-
B+树的节点只存储索引key值,具体信息的地址存在于叶子节点的地址中。这就使以页为单位的索引中可以存放更多的节点。减少更多的I/O支出。
-
B+树的查询效率更加稳定,任何关键字的查找必须走一条从根结点到叶子结点的路。所有关键字查询的路径长度相同,导致每一个数据的查询效率相当。
索引有什么分类?
1、主键索引:名为primary的唯一非空索引,不允许有空值。
2、唯一索引:索引列中的值必须是唯一的,但是允许为空值。唯一索引和主键索引的区别是:唯一索引字段可以为null且可以存在多个null值,而主键索引字段不可以为null。唯一索引的用途:唯一标识数据库表中的每条记录,主要是用来防止数据重复插入。创建唯一索引的SQL语句如下:
ALTER TABLE table_name ADD CONSTRAINT constraint_name UNIQUE KEY(column_1,column_2,...);
3、组合索引:在表中的多个字段组合上创建的索引,只有在查询条件中使用了这些字段的左边字段时,索引才会被使用,使用组合索引时需遵循最左前缀原则。
4、全文索引:只能在
CHAR
、VARCHAR
和TEXT
类型字段上使用全文索引。5、普通索引:普通索引是最基本的索引,它没有任何限制,值可以为空。
什么是最左匹配原则?
如果 SQL 语句中用到了组合索引中的最左边的索引,那么这条 SQL 语句就可以利用这个组合索引去进行匹配。当遇到范围查询(
>
、<
、between
、like
)就会停止匹配,后面的字段不会用到索引。对
(a,b,c)
建立索引,查询条件使用 a/ab/abc 会走索引,使用 bc 不会走索引。对
(a,b,c,d)
建立索引,查询条件为a = 1 and b = 2 and c > 3 and d = 4
,那么a、b和c三个字段能用到索引,而d无法使用索引。因为遇到了范围查询。如下图,对(a, b) 建立索引,a 在索引树中是全局有序的,而 b 是全局无序,局部有序(当a相等时,会根据b进行排序)。直接执行
b = 2
这种查询条件无法使用索引。[外链图片转存失败,源站可能有防盗链机制,建议将图片保存下来直接上传(img-ktlqtBzD-1678522727947)(http://img.topjavaer.cn/img/最左前缀.png)]
当a的值确定的时候,b是有序的。例如
a = 1
时,b值为1,2是有序的状态。当a = 2
时候,b的值为1,4也是有序状态。 当执行a = 1 and b = 2
时a和b字段能用到索引。而执行a > 1 and b = 2
时,a字段能用到索引,b字段用不到索引。因为a的值此时是一个范围,不是固定的,在这个范围内b值不是有序的,因此b字段无法使用索引。什么是聚集索引?
InnoDB使用表的主键构造主键索引树,同时叶子节点中存放的即为整张表的记录数据。聚集索引叶子节点的存储是逻辑上连续的,使用双向链表连接,叶子节点按照主键的顺序排序,因此对于主键的排序查找和范围查找速度比较快。
聚集索引的叶子节点就是整张表的行记录。InnoDB 主键使用的是聚簇索引。聚集索引要比非聚集索引查询效率高很多。
对于
InnoDB
来说,聚集索引一般是表中的主键索引,如果表中没有显示指定主键,则会选择表中的第一个不允许为NULL
的唯一索引。如果没有主键也没有合适的唯一索引,那么InnoDB
内部会生成一个隐藏的主键作为聚集索引,这个隐藏的主键长度为6个字节,它的值会随着数据的插入自增。什么是覆盖索引?
select
的数据列只用从索引中就能够取得,不需要回表进行二次查询,也就是说查询列要被所使用的索引覆盖。对于innodb
表的二级索引,如果索引能覆盖到查询的列,那么就可以避免对主键索引的二次查询。不是所有类型的索引都可以成为覆盖索引。覆盖索引要存储索引列的值,而哈希索引、全文索引不存储索引列的值,所以MySQL使用b+树索引做覆盖索引。
对于使用了覆盖索引的查询,在查询前面使用
explain
,输出的extra列会显示为using index
。比如
user_like
用户点赞表,组合索引为(user_id, blog_id)
,user_id
和blog_id
都不为null
。explain select blog_id from user_like where user_id = 13;
explain
结果的Extra
列为Using index
,查询的列被索引覆盖,并且where筛选条件符合最左前缀原则,通过索引查找就能直接找到符合条件的数据,不需要回表查询数据。explain select user_id from user_like where blog_id = 1;
explain
结果的Extra
列为Using where; Using index
, 查询的列被索引覆盖,where筛选条件不符合最左前缀原则,无法通过索引查找找到符合条件的数据,但可以通过索引扫描找到符合条件的数据,也不需要回表查询数据。索引的设计原则?
- 对于经常作为查询条件的字段,应该建立索引,以提高查询速度
- 为经常需要排序、分组和联合操作的字段建立索引
- 索引列的区分度越高,索引的效果越好。比如使用性别这种区分度很低的列作为索引,效果就会很差。
- 避免给"大字段"建立索引。尽量使用数据量小的字段作为索引。因为
MySQL
在维护索引的时候是会将字段值一起维护的,那这样必然会导致索引占用更多的空间,另外在排序的时候需要花费更多的时间去对比。 - 尽量使用短索引,对于较长的字符串进行索引时应该指定一个较短的前缀长度,因为较小的索引涉及到的磁盘I/O较少,查询速度更快。
- 索引不是越多越好,每个索引都需要额外的物理空间,维护也需要花费时间。
- 频繁增删改的字段不要建立索引。假设某个字段频繁修改,那就意味着需要频繁的重建索引,这必然影响MySQL的性能
- 利用最左前缀原则。
索引什么时候会失效?
导致索引失效的情况:
- 对于组合索引,不是使用组合索引最左边的字段,则不会使用索引
- 以%开头的like查询如
%abc
,无法使用索引;非%开头的like查询如abc%
,相当于范围查询,会使用索引 - 查询条件中列类型是字符串,没有使用引号,可能会因为类型不同发生隐式转换,使索引失效
- 判断索引列是否不等于某个值时
- 对索引列进行运算
- 查询条件使用
or
连接,也会导致索引失效
什么是前缀索引?
有时需要在很长的字符列上创建索引,这会造成索引特别大且慢。使用前缀索引可以避免这个问题。
前缀索引是指对文本或者字符串的前几个字符建立索引,这样索引的长度更短,查询速度更快。
创建前缀索引的关键在于选择足够长的前缀以保证较高的索引选择性。索引选择性越高查询效率就越高,因为选择性高的索引可以让MySQL在查找时过滤掉更多的数据行。
建立前缀索引的方式:
// email列创建前缀索引 ALTER TABLE table_name ADD KEY(column_name(prefix_length));
索引下推
参考我的另一篇文章:图解索引下推!
常见的存储引擎有哪些?
MySQL中常用的四种存储引擎分别是: MyISAM、InnoDB、MEMORY、ARCHIVE。MySQL 5.5版本后默认的存储引擎为
InnoDB
。InnoDB存储引擎
InnoDB是MySQL默认的事务型存储引擎,使用最广泛,基于聚簇索引建立的。InnoDB内部做了很多优化,如能够自动在内存中创建自适应hash索引,以加速读操作。
优点:支持事务和崩溃修复能力;引入了行级锁和外键约束。
缺点:占用的数据空间相对较大。
适用场景:需要事务支持,并且有较高的并发读写频率。
MyISAM存储引擎
数据以紧密格式存储。对于只读数据,或者表比较小、可以容忍修复操作,可以使用MyISAM引擎。MyISAM会将表存储在两个文件中,数据文件
.MYD
和索引文件.MYI
。优点:访问速度快。
缺点:MyISAM不支持事务和行级锁,不支持崩溃后的安全恢复,也不支持外键。
适用场景:对事务完整性没有要求;表的数据都会只读的。
MEMORY存储引擎
MEMORY引擎将数据全部放在内存中,访问速度较快,但是一旦系统奔溃的话,数据都会丢失。
MEMORY引擎默认使用哈希索引,将键的哈希值和指向数据行的指针保存在哈希索引中。
优点:访问速度较快。
缺点:
- 哈希索引数据不是按照索引值顺序存储,无法用于排序。
- 不支持部分索引匹配查找,因为哈希索引是使用索引列的全部内容来计算哈希值的。
- 只支持等值比较,不支持范围查询。
- 当出现哈希冲突时,存储引擎需要遍历链表中所有的行指针,逐行进行比较,直到找到符合条件的行。
ARCHIVE存储引擎
ARCHIVE存储引擎非常适合存储大量独立的、作为历史记录的数据。ARCHIVE提供了压缩功能,拥有高效的插入速度,但是这种引擎不支持索引,所以查询性能较差。
MyISAM和InnoDB的区别?
- 存储结构的区别。每个MyISAM在磁盘上存储成三个文件。文件的名字以表的名字开始,扩展名指出文件类型。 .frm文件存储表定义。数据文件的扩展名为.MYD (MYData)。索引文件的扩展名是.MYI (MYIndex)。InnoDB所有的表都保存在同一个数据文件中(也可能是多个文件,或者是独立的表空间文件),InnoDB表的大小只受限于操作系统文件的大小,一般为2GB。
- 存储空间的区别。MyISAM支持支持三种不同的存储格式:静态表(默认,但是注意数据末尾不能有空格,会被去掉)、动态表、压缩表。当表在创建之后并导入数据之后,不会再进行修改操作,可以使用压缩表,极大的减少磁盘的空间占用。InnoDB需要更多的内存和存储,它会在主内存中建立其专用的缓冲池用于高速缓冲数据和索引。
- 可移植性、备份及恢复。MyISAM数据是以文件的形式存储,所以在跨平台的数据转移中会很方便。在备份和恢复时可单独针对某个表进行操作。对于InnoDB,可行的方案是拷贝数据文件、备份 binlog,或者用mysqldump,在数据量达到几十G的时候就相对麻烦了。
- 是否支持行级锁。MyISAM 只支持表级锁,用户在操作myisam表时,select,update,delete,insert语句都会给表自动加锁,如果加锁以后的表满足insert并发的情况下,可以在表的尾部插入新的数据。而InnoDB 支持行级锁和表级锁,默认为行级锁。行锁大幅度提高了多用户并发操作的性能。
- 是否支持事务和崩溃后的安全恢复。 MyISAM 不提供事务支持。而InnoDB 提供事务支持,具有事务、回滚和崩溃修复能力。
- 是否支持外键。MyISAM不支持,而InnoDB支持。
- 是否支持MVCC。MyISAM不支持,InnoDB支持。应对高并发事务,MVCC比单纯的加锁更高效。
- 是否支持聚集索引。MyISAM不支持聚集索引,InnoDB支持聚集索引。
- 全文索引。MyISAM支持 FULLTEXT类型的全文索引。InnoDB不支持FULLTEXT类型的全文索引,但是innodb可以使用sphinx插件支持全文索引,并且效果更好。
- 表主键。MyISAM允许没有任何索引和主键的表存在,索引都是保存行的地址。对于InnoDB,如果没有设定主键或者非空唯一索引,就会自动生成一个6字节的主键(用户不可见)。
- 表的行数。MyISAM保存有表的总行数,如果
select count(*) from table
;会直接取出该值。InnoDB没有保存表的总行数,如果使用select count(*) from table;就会遍历整个表,消耗相当大,但是在加了where条件后,MyISAM和InnoDB处理的方式都一样。
MySQL有哪些锁?
按锁粒度分类,有行级锁、表级锁和页级锁。
- 行级锁是mysql中锁定粒度最细的一种锁。表示只针对当前操作的行进行加锁。行级锁能大大减少数据库操作的冲突,其加锁粒度最小,但加锁的开销也最大。行级锁的类型主要有三类:
- Record Lock,记录锁,也就是仅仅把一条记录锁上;
- Gap Lock,间隙锁,锁定一个范围,但是不包含记录本身;
- Next-Key Lock:Record Lock + Gap Lock 的组合,锁定一个范围,并且锁定记录本身。
- 表级锁是mysql中锁定粒度最大的一种锁,表示对当前操作的整张表加锁,它实现简单,资源消耗较少,被大部分mysql引擎支持。最常使用的MyISAM与InnoDB都支持表级锁定。
- 页级锁是 MySQL 中锁定粒度介于行级锁和表级锁中间的一种锁。表级锁速度快,但冲突多,行级冲突少,但速度慢。因此,采取了折衷的页级锁,一次锁定相邻的一组记录。
按锁级别分类,有共享锁、排他锁和意向锁。
- 共享锁又称读锁,是读取操作创建的锁。其他用户可以并发读取数据,但任何事务都不能对数据进行修改(获取数据上的排他锁),直到已释放所有共享锁。
- 排他锁又称写锁、独占锁,如果事务T对数据A加上排他锁后,则其他事务不能再对A加任何类型的封锁。获准排他锁的事务既能读数据,又能修改数据。
- 意向锁是表级锁,其设计目的主要是为了在一个事务中揭示下一行将要被请求锁的类型。InnoDB 中的两个表锁:
意向共享锁(IS):表示事务准备给数据行加入共享锁,也就是说一个数据行加共享锁前必须先取得该表的IS锁;
意向排他锁(IX):类似上面,表示事务准备给数据行加入排他锁,说明事务在一个数据行加排他锁前必须先取得该表的IX锁。
意向锁是 InnoDB 自动加的,不需要用户干预。
对于INSERT、UPDATE和DELETE,InnoDB 会自动给涉及的数据加排他锁;对于一般的SELECT语句,InnoDB 不会加任何锁,事务可以通过以下语句显式加共享锁或排他锁。
共享锁:
SELECT … LOCK IN SHARE MODE;
排他锁:
SELECT … FOR UPDATE;
MVCC 实现原理?
MVCC(
Multiversion concurrency control
) 就是同一份数据保留多版本的一种方式,进而实现并发控制。在查询的时候,通过read view
和版本链找到对应版本的数据。作用:提升并发性能。对于高并发场景,MVCC比行级锁开销更小。
MVCC 实现原理如下:
MVCC 的实现依赖于版本链,版本链是通过表的三个隐藏字段实现。
DB_TRX_ID
:当前事务id,通过事务id的大小判断事务的时间顺序。DB_ROLL_PTR
:回滚指针,指向当前行记录的上一个版本,通过这个指针将数据的多个版本连接在一起构成undo log
版本链。DB_ROW_ID
:主键,如果数据表没有主键,InnoDB会自动生成主键。
每条表记录大概是这样的:
使用事务更新行记录的时候,就会生成版本链,执行过程如下:
- 用排他锁锁住该行;
- 将该行原本的值拷贝到
undo log
,作为旧版本用于回滚; - 修改当前行的值,生成一个新版本,更新事务id,使回滚指针指向旧版本的记录,这样就形成一条版本链。
下面举个例子方便大家理解。
1、初始数据如下,其中
DB_ROW_ID
和DB_ROLL_PTR
为空。2、事务A对该行数据做了修改,将
age
修改为12,效果如下:3、之后事务B也对该行记录做了修改,将
age
修改为8,效果如下:4、此时undo log有两行记录,并且通过回滚指针连在一起。
接下来了解下read view的概念。
read view
可以理解成将数据在每个时刻的状态拍成“照片”记录下来。在获取某时刻t的数据时,到t时间点拍的“照片”上取数据。在
read view
内部维护一个活跃事务链表,表示生成read view
的时候还在活跃的事务。这个链表包含在创建read view
之前还未提交的事务,不包含创建read view
之后提交的事务。不同隔离级别创建read view的时机不同。
-
read committed:每次执行select都会创建新的read_view,保证能读取到其他事务已经提交的修改。
-
repeatable read:在一个事务范围内,第一次select时更新这个read_view,以后不会再更新,后续所有的select都是复用之前的read_view。这样可以保证事务范围内每次读取的内容都一样,即可重复读。
read view的记录筛选方式
前提:
DATA_TRX_ID
表示每个数据行的最新的事务ID;up_limit_id
表示当前快照中的最先开始的事务;low_limit_id
表示当前快照中的最慢开始的事务,即最后一个事务。- 如果
DATA_TRX_ID
<up_limit_id
:说明在创建read view
时,修改该数据行的事务已提交,该版本的记录可被当前事务读取到。 - 如果
DATA_TRX_ID
>=low_limit_id
:说明当前版本的记录的事务是在创建read view
之后生成的,该版本的数据行不可以被当前事务访问。此时需要通过版本链找到上一个版本,然后重新判断该版本的记录对当前事务的可见性。 - 如果
up_limit_id
<=DATA_TRX_ID
<low_limit_i
:- 需要在活跃事务链表中查找是否存在ID为
DATA_TRX_ID
的值的事务。 - 如果存在,因为在活跃事务链表中的事务是未提交的,所以该记录是不可见的。此时需要通过版本链找到上一个版本,然后重新判断该版本的可见性。
- 如果不存在,说明事务trx_id 已经提交了,这行记录是可见的。
- 需要在活跃事务链表中查找是否存在ID为
总结:InnoDB 的
MVCC
是通过read view
和版本链实现的,版本链保存有历史版本记录,通过read view
判断当前版本的数据是否可见,如果不可见,再从版本链中找到上一个版本,继续进行判断,直到找到一个可见的版本。快照读和当前读
表记录有两种读取方式。
-
快照读:读取的是快照版本。普通的
SELECT
就是快照读。通过mvcc来进行并发控制的,不用加锁。 -
当前读:读取的是最新版本。
UPDATE、DELETE、INSERT、SELECT … LOCK IN SHARE MODE、SELECT … FOR UPDATE
是当前读。
快照读情况下,InnoDB通过
mvcc
机制避免了幻读现象。而mvcc
机制无法避免当前读情况下出现的幻读现象。因为当前读每次读取的都是最新数据,这时如果两次查询中间有其它事务插入数据,就会产生幻读。下面举个例子说明下:
1、首先,user表只有两条记录,具体如下:
2、事务a和事务b同时开启事务
start transaction
;3、事务a插入数据然后提交;
insert into user(user_name, user_password, user_mail, user_state) values('tyson', 'a', 'a', 0);
4、事务b执行全表的update;
update user set user_name = 'a';
5、事务b然后执行查询,查到了事务a中插入的数据。(下图左边是事务b,右边是事务a。事务开始之前只有两条记录,事务a插入一条数据之后,事务b查询出来是三条数据)
[外链图片转存失败,源站可能有防盗链机制,建议将图片保存下来直接上传(img-KW6cMg0f-1678522727989)(http://img.topjavaer.cn/img/幻读1.png)]
以上就是当前读出现的幻读现象。
那么MySQL是如何避免幻读?
- 在快照读情况下,MySQL通过
mvcc
来避免幻读。 - 在当前读情况下,MySQL通过
next-key
来避免幻读(加行锁和间隙锁来实现的)。
next-key包括两部分:行锁和间隙锁。行锁是加在索引上的锁,间隙锁是加在索引之间的。
Serializable
隔离级别也可以避免幻读,会锁住整张表,并发性极低,一般不会使用。共享锁和排他锁
SELECT 的读取锁定主要分为两种方式:共享锁和排他锁。
select * from table where id<6 lock in share mode;--共享锁 select * from table where id<6 for update;--排他锁
这两种方式主要的不同在于
LOCK IN SHARE MODE
多个事务同时更新同一个表单时很容易造成死锁。申请排他锁的前提是,没有线程对该结果集的任何行数据使用排它锁或者共享锁,否则申请会受到阻塞。在进行事务操作时,MySQL会对查询结果集的每行数据添加排它锁,其他线程对这些数据的更改或删除操作会被阻塞(只能读操作),直到该语句的事务被
commit
语句或rollback
语句结束为止。SELECT... FOR UPDATE
使用注意事项:for update
仅适用于innodb,且必须在事务范围内才能生效。- 根据主键进行查询,查询条件为
like
或者不等于,主键字段产生表锁。 - 根据非索引字段进行查询,会产生表锁。
bin log/redo log/undo log
MySQL日志主要包括查询日志、慢查询日志、事务日志、错误日志、二进制日志等。其中比较重要的是
bin log
(二进制日志)和redo log
(重做日志)和undo log
(回滚日志)。bin log
bin log
是MySQL数据库级别的文件,记录对MySQL数据库执行修改的所有操作,不会记录select和show语句,主要用于恢复数据库和同步数据库。redo log
redo log
是innodb引擎级别,用来记录innodb存储引擎的事务日志,不管事务是否提交都会记录下来,用于数据恢复。当数据库发生故障,innoDB存储引擎会使用redo log
恢复到发生故障前的时刻,以此来保证数据的完整性。将参数innodb_flush_log_at_tx_commit
设置为1,那么在执行commit时会将redo log
同步写到磁盘。undo log
除了记录
redo log
外,当进行数据修改时还会记录undo log
,undo log
用于数据的撤回操作,它保留了记录修改前的内容。通过undo log
可以实现事务回滚,并且可以根据undo log
回溯到某个特定的版本的数据,实现MVCC。bin log和redo log有什么区别?
bin log
会记录所有日志记录,包括InnoDB、MyISAM等存储引擎的日志;redo log
只记录innoDB自身的事务日志。bin log
只在事务提交前写入到磁盘,一个事务只写一次;而在事务进行过程,会有redo log
不断写入磁盘。bin log
是逻辑日志,记录的是SQL语句的原始逻辑;redo log
是物理日志,记录的是在某个数据页上做了什么修改。
讲一下MySQL架构?
MySQL主要分为 Server 层和存储引擎层:
- Server 层:主要包括连接器、查询缓存、分析器、优化器、执行器等,所有跨存储引擎的功能都在这一层实现,比如存储过程、触发器、视图,函数等,还有一个通用的日志模块 binglog 日志模块。
- 存储引擎: 主要负责数据的存储和读取。server 层通过api与存储引擎进行通信。
Server 层基本组件
- 连接器: 当客户端连接 MySQL 时,server层会对其进行身份认证和权限校验。
- 查询缓存: 执行查询语句的时候,会先查询缓存,先校验这个 sql 是否执行过,如果有缓存这个 sql,就会直接返回给客户端,如果没有命中,就会执行后续的操作。
- 分析器: 没有命中缓存的话,SQL 语句就会经过分析器,主要分为两步,词法分析和语法分析,先看 SQL 语句要做什么,再检查 SQL 语句语法是否正确。
- 优化器: 优化器对查询进行优化,包括重写查询、决定表的读写顺序以及选择合适的索引等,生成执行计划。
- 执行器: 首先执行前会校验该用户有没有权限,如果没有权限,就会返回错误信息,如果有权限,就会根据执行计划去调用引擎的接口,返回结果。
分库分表
当单表的数据量达到1000W或100G以后,优化索引、添加从库等可能对数据库性能提升效果不明显,此时就要考虑对其进行切分了。切分的目的就在于减少数据库的负担,缩短查询的时间。
数据切分可以分为两种方式:垂直划分和水平划分。
垂直划分
垂直划分数据库是根据业务进行划分,例如购物场景,可以将库中涉及商品、订单、用户的表分别划分出成一个库,通过降低单库的大小来提高性能。同样的,分表的情况就是将一个大表根据业务功能拆分成一个个子表,例如商品基本信息和商品描述,商品基本信息一般会展示在商品列表,商品描述在商品详情页,可以将商品基本信息和商品描述拆分成两张表。
[外链图片转存失败,源站可能有防盗链机制,建议将图片保存下来直接上传(img-U3Ee5ixQ-1678522727993)(http://img.topjavaer.cn/img/垂直划分.png)]
优点:行记录变小,数据页可以存放更多记录,在查询时减少I/O次数。
缺点:
- 主键出现冗余,需要管理冗余列;
- 会引起表连接JOIN操作,可以通过在业务服务器上进行join来减少数据库压力;
- 依然存在单表数据量过大的问题。
水平划分
水平划分是根据一定规则,例如时间或id序列值等进行数据的拆分。比如根据年份来拆分不同的数据库。每个数据库结构一致,但是数据得以拆分,从而提升性能。
[外链图片转存失败,源站可能有防盗链机制,建议将图片保存下来直接上传(img-EWGghZza-1678522727995)(http://img.topjavaer.cn/img/水平划分.png)]
优点:单库(表)的数据量得以减少,提高性能;切分出的表结构相同,程序改动较少。
缺点:
- 分片事务一致性难以解决
- 跨节点
join
性能差,逻辑复杂 - 数据分片在扩容时需要迁移
什么是分区表?
分区是把一张表的数据分成N多个区块。分区表是一个独立的逻辑表,但是底层由多个物理子表组成。
当查询条件的数据分布在某一个分区的时候,查询引擎只会去某一个分区查询,而不是遍历整个表。在管理层面,如果需要删除某一个分区的数据,只需要删除对应的分区即可。
分区一般都是放在单机里的,用的比较多的是时间范围分区,方便归档。只不过分库分表需要代码实现,分区则是mysql内部实现。分库分表和分区并不冲突,可以结合使用。
分区表类型
range分区,按照范围分区。比如按照时间范围分区
CREATE TABLE test_range_partition( id INT auto_increment, createdate DATETIME, primary key (id,createdate) ) PARTITION BY RANGE (TO_DAYS(createdate) ) ( PARTITION p201801 VALUES LESS THAN ( TO_DAYS('20180201') ), PARTITION p201802 VALUES LESS THAN ( TO_DAYS('20180301') ), PARTITION p201803 VALUES LESS THAN ( TO_DAYS('20180401') ), PARTITION p201804 VALUES LESS THAN ( TO_DAYS('20180501') ), PARTITION p201805 VALUES LESS THAN ( TO_DAYS('20180601') ), PARTITION p201806 VALUES LESS THAN ( TO_DAYS('20180701') ), PARTITION p201807 VALUES LESS THAN ( TO_DAYS('20180801') ), PARTITION p201808 VALUES LESS THAN ( TO_DAYS('20180901') ), PARTITION p201809 VALUES LESS THAN ( TO_DAYS('20181001') ), PARTITION p201810 VALUES LESS THAN ( TO_DAYS('20181101') ), PARTITION p201811 VALUES LESS THAN ( TO_DAYS('20181201') ), PARTITION p201812 VALUES LESS THAN ( TO_DAYS('20190101') ) );
在
/var/lib/mysql/data/
可以找到对应的数据文件,每个分区表都有一个使用#分隔命名的表文件:-rw-r----- 1 MySQL MySQL 65 Mar 14 21:47 db.opt -rw-r----- 1 MySQL MySQL 8598 Mar 14 21:50 test_range_partition.frm -rw-r----- 1 MySQL MySQL 98304 Mar 14 21:50 test_range_partition#P#p201801.ibd -rw-r----- 1 MySQL MySQL 98304 Mar 14 21:50 test_range_partition#P#p201802.ibd -rw-r----- 1 MySQL MySQL 98304 Mar 14 21:50 test_range_partition#P#p201803.ibd ...
list分区
list分区和range分区相似,主要区别在于list是枚举值列表的集合,range是连续的区间值的集合。对于list分区,分区字段必须是已知的,如果插入的字段不在分区时的枚举值中,将无法插入。
create table test_list_partiotion ( id int auto_increment, data_type tinyint, primary key(id,data_type) )partition by list(data_type) ( partition p0 values in (0,1,2,3,4,5,6), partition p1 values in (7,8,9,10,11,12), partition p2 values in (13,14,15,16,17) );
hash分区
可以将数据均匀地分布到预先定义的分区中。
create table test_hash_partiotion ( id int auto_increment三天吃透MySQL面试八股文