神经网络优化鲸鱼算法

Posted 优化大师傅

tags:

篇首语:本文由小常识网(cha138.com)小编为大家整理,主要介绍了神经网络优化鲸鱼算法相关的知识,希望对你有一定的参考价值。

%_________________________________________________________________________%
%  Whale Optimization Algorithm (WOA) source codes demo 1.0               %
%                                                                         %
%                                                                         %
%_________________________________________________________________________%

% You can simply define your cost in a seperate file and load its handle to fobj 
% The initial parameters that you need are:
%__________________________________________
% fobj = @YourCostFunction
% dim = number of your variables
% Max_iteration = maximum number of generations
% SearchAgents_no = number of search agents
% lb=[lb1,lb2,...,lbn] where lbn is the lower bound of variable n
% ub=[ub1,ub2,...,ubn] where ubn is the upper bound of variable n
% If all the variables have equal lower bound you can just
% define lb and ub as two single number numbers

% To run ALO: [Best_score,Best_pos,cg_curve]=ALO(SearchAgents_no,Max_iteration,lb,ub,dim,fobj)

% The Whale Optimization Algorithm
function [Leader_score,Leader_pos,Convergence_curve]=WOA(SearchAgents_no,Max_iter,lb,ub,dim,fobj,handles,value)

% initialize position vector and score for the leader
Leader_pos=zeros(1,dim);
Leader_score=inf; %change this to -inf for maximization problems


%Initialize the positions of search agents
Positions=initialization(SearchAgents_no,dim,ub,lb);

Convergence_curve=zeros(1,Max_iter);

t=0;% Loop counter

% Main loop
while t<Max_iter
    for i=1:size(Positions,1)
        
        % Return back the search agents that go beyond the boundaries of the search space
        Flag4ub=Positions(i,:)>ub;
        Flag4lb=Positions(i,:)<lb;
        Positions(i,:)=(Positions(i,:).*(~(Flag4ub+Flag4lb)))+ub.*Flag4ub+lb.*Flag4lb;
        
        % Calculate objective function for each search agent
        fitness=fobj(Positions(i,:));
        All_fitness(1,i)=fitness;
        
        % Update the leader
        if fitness<Leader_score % Change this to > for maximization problem
            Leader_score=fitness; % Update alpha
            Leader_pos=Positions(i,:);
        end
        
    end
    
    a=2-t*((2)/Max_iter); % a decreases linearly fron 2 to 0 in Eq. (2.3)
    
    % a2 linearly dicreases from -1 to -2 to calculate t in Eq. (3.12)
    a2=-1+t*((-1)/Max_iter);
    
    % Update the Position of search agents 
    for i=1:size(Positions,1)
        r1=rand(); % r1 is a random number in [0,1]
        r2=rand(); % r2 is a random number in [0,1]
        
        A=2*a*r1-a;  % Eq. (2.3) in the paper
        C=2*r2;      % Eq. (2.4) in the paper
        
        
        b=1;               %  parameters in Eq. (2.5)
        l=(a2-1)*rand+1;   %  parameters in Eq. (2.5)
        
        p = rand();        % p in Eq. (2.6)
        
        for j=1:size(Positions,2)
            
            if p<0.5   
                if abs(A)>=1
                    rand_leader_index = floor(SearchAgents_no*rand()+1);
                    X_rand = Positions(rand_leader_index, :);
                    D_X_rand=abs(C*X_rand(j)-Positions(i,j)); % Eq. (2.7)
                    Positions(i,j)=X_rand(j)-A*D_X_rand;      % Eq. (2.8)
                    
                elseif abs(A)<1
                    D_Leader=abs(C*Leader_pos(j)-Positions(i,j)); % Eq. (2.1)
                    Positions(i,j)=Leader_pos(j)-A*D_Leader;      % Eq. (2.2)
                end
                
            elseif p>=0.5
              
                distance2Leader=abs(Leader_pos(j)-Positions(i,j));
                % Eq. (2.5)
                Positions(i,j)=distance2Leader*exp(b.*l).*cos(l.*2*pi)+Leader_pos(j);
                
            end
            
        end
    end
    
    t=t+1;
    Convergence_curve(t)=Leader_score;
    
    if t>2
        line([t-1 t], [Convergence_curve(t-1) Convergence_curve(t)],'Color','b')
        xlabel('Iteration');
        ylabel('Best score obtained so far');        
        drawnow
    end
 
    
    set(handles.itertext,'String', ['The current iteration is ', num2str(t)])
    set(handles.optimumtext,'String', ['The current optimal value is ', num2str(Leader_score)])
    if value==1
        hold on
        scatter(t*ones(1,SearchAgents_no),All_fitness,'.','k')
    end
    
    
    
    
end



 

优化预测基于matlab鲸鱼算法优化CNN神经网络预测含Matlab源码 1453期

一、鲸鱼算法及CNN简介

1 鲸鱼优化算法(Whale Optimization Algorithm,WOA)简介
鲸鱼优化算法(WOA),该算法模拟了座头鲸的社会行为,并引入了气泡网狩猎策略。

1.1 灵感
鲸鱼被认为是世界上最大的哺乳动物。一头成年鲸可以长达 30 米,重 180 吨。这种巨型哺乳动物有 7 种不同的主要物种,如虎鲸,小须鲸,鳁鲸,座头鲸,露脊鲸,长须鲸和蓝鲸等。鲸通常被认为是食肉动物,它们从不睡觉,因为它们必须到海洋表面进行呼吸,但事实上,鲸鱼有一半的大脑都处于睡眠状态。
鲸鱼在大脑的某些区域有与人类相似的细胞,这些细胞被称为纺锤形细胞(spindle cells)。这些细胞负责人类的判断、情感和社会行为。换句话说,纺锤形细胞使我们人类有别于其他生物。鲸鱼的这些细胞数量是成年人的两倍,这是它们具有高度智慧和更富情感的主要原因。已经证明,鲸鱼可以像人类一样思考、学习、判断、交流,甚至变得情绪化,但显然,这都只是在一个很低的智能水平上。据观察,鲸鱼(主要是虎鲸)也能发展自己的方言。
另一个有趣的点是关于鲸鱼的社会行为,它们可独居也可群居,但我们观察到的大多数仍然是群居。它们中的一些物种(例如虎鲸)可以在整个生命周期中生活在一个家族中。最大的须鲸之一是座头鲸,一头成年座头鲸几乎和一辆校车一样大。它们最喜欢的猎物是磷虾和小鱼群。图1显示的就是这种哺乳动物。

以上是关于神经网络优化鲸鱼算法的主要内容,如果未能解决你的问题,请参考以下文章

matlab改进鲸鱼算法求解路径优化

matlab改进鲸鱼算法求解路径优化

回归预测基于matlab鲸鱼算法优化ELMAN神经网络回归预测含Matlab源码 1667期

回归预测基于matlab鲸鱼算法优化BP神经网络回归预测(多输入单输出)含Matlab源码 1554期

神经网络优化鲸鱼算法

BP回归预测基于matlab改进的鲸鱼算法优化BP神经网络回归预测(多输入单输出)含Matlab源码 2184期