bzoj千题计划309:bzoj4332: JSOI2012 分零食(分治FFT)
Posted 日拱一卒 功不唐捐
tags:
篇首语:本文由小常识网(cha138.com)小编为大家整理,主要介绍了bzoj千题计划309:bzoj4332: JSOI2012 分零食(分治FFT)相关的知识,希望对你有一定的参考价值。
https://www.lydsy.com/JudgeOnline/problem.php?id=4332
因为如果一位小朋友得不到糖果,那么在她身后的小朋友们也都得不到糖果。
所以设g[i][j] 表示前i位小朋友,分到j个糖果,且前i位小朋友都分到糖果的方案数
令F(x) 表示分到x个糖果的欢乐程度
∴g[i][j] = ∑ g[i-1][j-k]*F(k)
记g[i]=g[i-1]*F,则 g[i]=F ^ i
但是要求的是 Σ g[i][m]
记f[n]=Σ g[i] i∈[1,n] ,那么ans=f[n][m]
f[n]=Σ g[i] i∈[1,n]
=Σ f(n/2)+Σ g[i] i∈[n/2+1,n]
=Σ f(n/2)+Σ F^i i∈[n/2+1,n]
=Σ f(n/2)+Σ F^(n/2+i) i∈[1,n/2]
=Σ f(n/2)+F^(n/2) * Σ F^i i∈[1,n/2]
=Σ f(n/2)+g(n/2)*f(n/2)
然后可以分治FFT解决
如果n是奇数,f(n)=f(n-1)+g[n]=f(n-1)+g(n-1)*f
边界条件:g[][0]=1
#include<cmath> #include<cstdio> #include<algorithm> using namespace std; const int M=1<<17; #define N 10001 int m,mod; int r[M+1]; int len; const double pi=acos(-1); struct Complex { double x,y; Complex() { } Complex(double x_,double y_):x(x_),y(y_) { } Complex operator + (Complex p) { Complex C; C.x=x+p.x; C.y=y+p.y; return C; } Complex operator - (Complex p) { Complex C; C.x=x-p.x; C.y=y-p.y; return C; } Complex operator * (Complex p) { Complex C; C.x=x*p.x-y*p.y; C.y=x*p.y+y*p.x; return C; } void clear() { x=y=0; } }; typedef Complex E; E F[M+1],f[M+1],g[M+1],tmp[M+1]; void FFT(E *a,int ty) { for(int i=0;i<len;++i) if(i<r[i]) swap(a[i],a[r[i]]); for(int i=1;i<len;i<<=1) { E wn(cos(pi/i),ty*sin(pi/i)); for(int p=i<<1,j=0;j<len;j+=p) { E w(1,0); for(int k=0;k<i;++k,w=w*wn) { E x=a[j+k],y=w*a[i+j+k]; a[j+k]=x+y; a[i+j+k]=x-y; } } } if(ty==-1) { for(int i=0;i<len;++i) a[i].x=a[i].x/len,a[i].x=int(a[i].x+0.5)%mod,a[i].y=0; } } void solve(E *f,E *g,int n) { if(!n) { g[0].x=1; return; } if(n&1) { solve(f,g,n-1); FFT(g,1); for(int i=0;i<len;++i) g[i]=g[i]*F[i]; FFT(g,-1); for(int i=0;i<=m;++i) f[i]=f[i]+g[i]; for(int i=0;i<=m;++i) f[i].x=int(f[i].x)%mod,f[i].y=0; for(int i=m+1;i<len;++i) f[i].clear(),g[i].clear(); } else { solve(f,g,n/2); for(int i=0;i<len;++i) tmp[i]=f[i]; FFT(tmp,1); FFT(g,1); for(int i=0;i<len;++i) tmp[i]=tmp[i]*g[i]; FFT(tmp,-1); for(int i=0;i<len;++i) g[i]=g[i]*g[i]; FFT(g,-1); for(int i=0;i<=m;++i) f[i]=f[i]+tmp[i]; for(int i=0;i<=m;++i) f[i].x=int(f[i].x)%mod,f[i].y=0; for(int i=m+1;i<len;++i) f[i].clear(),g[i].clear(); } } int main() { int n,o,s,u; scanf("%d%d%d%d%d%d",&m,&mod,&n,&o,&s,&u); //F[0].x=1; for(int i=1;i<=m;++i) F[i].x=(o*i*i+s*i+u)%mod; int l=0; for(len=1;len<=m+m;len<<=1,l++); for(int i=0;i<len;++i) r[i]=(r[i>>1]>>1)|((i&1)<<l-1); FFT(F,1); solve(f,g,n); printf("%d",int(f[m].x)); return 0; }
以上是关于bzoj千题计划309:bzoj4332: JSOI2012 分零食(分治FFT)的主要内容,如果未能解决你的问题,请参考以下文章
bzoj千题计划118:bzoj1028: [JSOI2007]麻将
bzoj千题计划144:bzoj1176: [Balkan2007]Mokia