入门密码学④非对称加密

Posted

tags:

篇首语:本文由小常识网(cha138.com)小编为大家整理,主要介绍了入门密码学④非对称加密相关的知识,希望对你有一定的参考价值。

参考技术A

公钥密码(Public-key cryptography) 也称非对称式密码(Asymmetric cryptography)是密码学的一种算法,它需要两个密钥,一个是公开密钥,另一个是私有密钥; 公钥用作加密,私钥则用作解密 。使用公钥把明文加密后所得的密文,只能用相对应的私钥才能解密并得到原本的明文,最初用来加密的公钥不能用作解密。由于加密和解密需要两个不同的密钥,故被称为非对称加密;不同于加密和解密都使用同一个密钥的对称加密。公钥可以公开,可任意向外发布;私钥不可以公开。

1976年以前,所有的加密方法都是同一种模式:加密和解密使用同样的规则。
1976年,由惠特菲尔德·迪菲(Bailey Whitfield Diffie)和马丁·赫尔曼(Martin Edward Hellman)在1976年首次发表 迪菲-赫尔曼密钥交换
1977年,Ralph Merkle和Martin Hellman 共同设计了一种具体的公钥密码算法-- Knapsack
1978年,罗纳德·李维斯特(Ron Rivest)、阿迪·萨莫尔(Adi Shamir)和伦纳德·阿德曼(Leonard Adleman)共同发表了一种公钥密码算法-- RSA
RSA 可以说是现在公钥密码的事实标准

在对称密码中,由于加密和解密的密钥是相同的,因此必须向接收者配送密钥。由于解密的密钥必须被配送给接收者,在传输中的过程中存在着被窃听的问题,这一问题称为 密钥配送问题
解决密钥配送问题的方法有以下几种:

RSA 是世界第一个广泛使用的公钥算法,可以被用于公钥密码和数字签名。RSA公开密钥密码体制的原理是:根据数论,寻求两个大素数比较简单,而将它们的乘积进行因式分解却极其困难,因此可以将乘积公开作为加密密钥。它的强度被认为与分解一个非常大的数字的难度有关。以现代数字计算机的当前和可预见的速度,在生成 RSA 密钥时选择足够长的素数应该使该算法无限期地安全。但是,这种信念尚未在数学上得到证明,并且可能有一种快速分解算法或一种完全不同的破解 RSA 加密的方法。

ab = 1

然而只根据 N 和 E(注意:不是p和q)要计算出 d 是不可能的。因此,任何人都可对明文进行加密,但只有授权用户(知道D)才可对密文解密。

RSA 是现在最为普及的一种公钥密码算法,但是除了 RSA之外还有其他的公钥密码,基于与 RSA 等效复杂度的不同数学,包括 ElGamal 加密 、 Rabin 方式 和 椭圆曲线加密 。

在密码学中, ElGamal 加密算法 是一个基于迪菲-赫尔曼密钥交换的非对称加密算法。它在1985年由塔希尔·盖莫尔(Taher ElGamal)提出。ElGamal加密算法利用了 求离散对数的困难数。

Rabin 利用了 下平方根的困难度

椭圆曲线密码 是通过将椭圆曲线上的特定点进行特殊的乘法运算实现,它利用了这种乘法运算的逆运算非常困难这一特性。它的特点是所需的密钥长度比 RSA 短。

以上是关于入门密码学④非对称加密的主要内容,如果未能解决你的问题,请参考以下文章

新手入门对称加密与非对称加密的概念

非对称加密法入门:私钥公钥RSA全解析

密码学中的对称加密和非对称加密

对称加密vs非对称加密

非对称加密和对称加密

区块链入门到实战之区块链 – 非对称加密