每日一题Day154LC1626无矛盾的最佳球队 | 动态规划
Posted TIkitianya
tags:
篇首语:本文由小常识网(cha138.com)小编为大家整理,主要介绍了每日一题Day154LC1626无矛盾的最佳球队 | 动态规划相关的知识,希望对你有一定的参考价值。
无矛盾的最佳球队【LC1626】
假设你是球队的经理。对于即将到来的锦标赛,你想组合一支总体得分最高的球队。球队的得分是球队中所有球员的分数 总和 。
然而,球队中的矛盾会限制球员的发挥,所以必须选出一支 没有矛盾 的球队。如果一名年龄较小球员的分数 严格大于 一名年龄较大的球员,则存在矛盾。同龄球员之间不会发生矛盾。
给你两个列表
scores
和ages
,其中每组scores[i]
和ages[i]
表示第i
名球员的分数和年龄。请你返回 所有可能的无矛盾球队中得分最高那支的分数 。
原本的思路想复杂了,虽然写的也是动态规划也排序了,用dfs回溯写了一版,每个球员有选或者不选两种可能,记录了小于等于当前年龄的最大分数,如果当前分数大于等于该值,才可以选择,然后超时。于是加记忆化,但是记忆化卡在了一个案例,没空就错了,代码放在下面,有兴趣的友友可以看看,也许思路就不大对吧
-
思路
将球员按照年龄升序排列,年龄相同的按照分数升序排序,假设第 i i i个人是球队中下标最大的,那么对于球队中下标比 i i i小的 j j j,必然有 a g e [ j ] ≤ a g e [ i ] age[j] \\le age[i] age[j]≤age[i]
- 如果 a g e [ j ] = a g e [ i ] age[j]=age[i] age[j]=age[i],年龄相同,分数从小到大排序,所以 s c o r e [ j ] ≤ s c o r e [ i ] score[j] \\le score[i] score[j]≤score[i]
- 如果 a g e [ j ] < a g e [ i ] age[j]<age[i] age[j]<age[i],按照题目要求,必须满足 s c o r e [ j ] ≤ s c o r e [ i ] score[j] \\le score[i] score[j]≤score[i]
所以排序后,需要从排序数组中选择score之和最大的递增子序列【允许有相同元素】,与题LC300相同,使用dp解决
-
动态规划
排序后的数组记为
players
, p l a y e r s [ i ] [ 0 ] players[i][0] players[i][0]为年龄, p l a y e r s [ i ] [ 1 ] players[i][1] players[i][1]为分数-
确定dp数组(dp table)以及下标的含义
dp[i]:dp[i]表示i之前包括i的以players[i]结尾最长上升子序列的最大分数之和
-
确定递推公式
如果 p l a y e r s [ i ] [ 1 ] ≥ p l a y e s [ j ] [ 1 ] players[i][1] \\ge playes[j][1] players[i][1]≥playes[j][1],那么
d p [ i ] = m a x ( d p [ i ] , d p [ j ] + p l a y e r s [ i ] [ 1 ] ) dp[i] = max(dp[i], dp[j] + players[i][1]) dp[i]=max(dp[i],dp[j]+players[i][1]) -
dp数组如何初始化
dp[0]=0;
-
确定遍历顺序
从前往后遍历
-
举例推导dp数组
class Solution public int bestTeamScore(int[] scores, int[] ages) int n = scores.length; int[][] players = new int[n][2]; for (int i = 0; i < n; i++) players[i][0] = ages[i]; players[i][1] = scores[i]; Arrays.sort(players, new Comparator<int[]>() public int compare(int[] o1, int[] o2) if (o1[0] == o2[0]) return o1[1] - o2[1]; return o1[0] -o2[0]; ); int[] dp = new int[n + 1]; int res = 0; for (int i = 1; i <= n; i++) for (int j = 0; j < i; j++) if (j == 0 || players[i - 1][1] >= players[j - 1][1]) dp[i] = Math.max(players[i - 1][1] + dp[j], dp[i]); res = Math.max(res, dp[i]); return res;
-
复杂度
- 时间复杂度: O ( n 2 ) O(n^2) O(n2)
- 空间复杂度: O ( n ) O(n) O(n)
-
-
代码学习:
将下标根据值排序
class Solution public int bestTeamScore(int[] scores, int[] ages) int n = scores.length, ans = 0; var ids = new Integer[n]; for (int i = 0; i < n; ++i) ids[i] = i; Arrays.sort(ids, (i, j) -> scores[i] != scores[j] ? scores[i] - scores[j] : ages[i] - ages[j]); var f = new int[n + 1]; for (int i = 0; i < n; ++i) for (int j = 0; j < i; ++j) if (ages[ids[j]] <= ages[ids[i]]) f[i] = Math.max(f[i], f[j]); f[i] += scores[ids[i]]; ans = Math.max(ans, f[i]); return ans; 作者:灵茶山艾府 链接:https://leetcode.cn/problems/best-team-with-no-conflicts/solutions/2183029/zui-chang-di-zeng-zi-xu-lie-cong-on2-dao-ojqu/ 来源:力扣(LeetCode) 著作权归作者所有。商业转载请联系作者获得授权,非商业转载请注明出处。
-
回溯 错误代码
有点01背包的感觉,背包的容量为年龄和分数
class Solution int[][] dp; public int bestTeamScore(int[] scores, int[] ages) int n = scores.length; int[][] players = new int[n][2]; int maxScore = 0; int maxAge = 0; for (int i = 0; i < n; i++) maxAge = Math.max(maxAge, ages[i]); maxScore = Math.max(maxScore, scores[i]); players[i][0] = ages[i]; players[i][1] = scores[i]; dp = new int[maxScore + 1][maxAge + 1]; for (int i = 0; i <= maxScore; i++) Arrays.fill(dp[i], -1); Arrays.sort(players, new Comparator<int[]>() public int compare(int[] o1, int[] o2) if (o1[0] == o2[0]) return o1[1] - o2[1]; return o1[0] -o2[0]; ); return dfs(players, 0, 0, 0); public int dfs(int[][] players, int i, int maxScore, int age) if (i == players.length) return 0; if (maxScore > 0 && age > 0 && dp[maxScore][age] != -1) return dp[maxScore][age]; // 不选 int score = dfs(players, i + 1, maxScore, age); // 选 if (age == players[i][0] || (age < players[i][0] && players[i][1] >= maxScore)) int curScore = maxScore; int curAge = age; if (curScore <= players[i][1]) curScore = players[i][1]; curAge = players[i][0]; score = Math.max(score, players[i][1] + dfs(players, i + 1, curScore, curAge)); dp[maxScore][age] = score; return score;
以上是关于每日一题Day154LC1626无矛盾的最佳球队 | 动态规划的主要内容,如果未能解决你的问题,请参考以下文章
每日一题Day160LC1092最短公共超序列 | 动态规划
每日一题Day162LC1637两点之间不包含任何点的最宽垂直区域 | 排序