R语言的一些矩阵运算

Posted

tags:

篇首语:本文由小常识网(cha138.com)小编为大家整理,主要介绍了R语言的一些矩阵运算相关的知识,希望对你有一定的参考价值。

参考技术A 摘自: https://www.cnblogs.com/yupeter007/p/5325575.html

矩阵的存储默认是按列进行存储的

matrix (data = NA, nrow = 1, ncol = 1, byrow =FALSE, dimnames = NULL)

创建一个c(1:12)的三行四列的矩阵,

colnames<-c("c1","c2","c3","c4")

rownames<-c("r1","r2","r3")

x<-matrix(1:12,nrow=3,ncol=4,byrow=TRUE,dimnames=list(rownames,colnames))

x
c1 c2 c3 c4
r1 1 2 3 4
r2 5 6 7 8
r3 9 10 11 12

y<-t(x)

若是针对的是一个向量

y<-(1:10)

装置后得到的是行向量

[1] "matrix"

若要的到列向量则

matrix(rnorm(100),nrow=10)

matrix(2,ncol=n,nrow=m)

4.1创建对角矩阵

diag(x,ncol=n,nrow=m)

若x为矩阵 则diag(x)将会提取矩阵x的对角,则返回的是向量值

返回的是以矩阵对角的对角矩阵

[,1] [,2] [,3]
[1,] 1 0 0
[2,] 0 1 0
[3,] 0 0 1

n<-ncol

m<-nrow

为矩阵的行和列命名

rownames(x)<-c()

colnames(x)<c()

A为m×n矩阵,c>0,在R中求cA可用符号:“*”,例如:

A为m×n矩阵,B为n×k矩阵,在R中求AB可用符号:“%*%”,例如:

对矩阵求逆

方法一:直接用solve(x)
方法二:加载包MASS
library(MASS)
ginv(matrix)

向量的内积

x<-c(1:5)

y<-c(3:7)

向量的外积

向量、矩阵的外积(叉积)
设x和y是n维向量,则x%o%y表示x与y作外积.

, , 2, 1
[,1] [,2] [,3] [,4]
[1,] 2 8 14 20
[2,] 4 10 16 22
[3,] 6 12 18 24
, , 1, 2
[,1] [,2] [,3] [,4]
[1,] 3 12 21 30
[2,] 6 15 24 33
[3,] 9 18 27 36
, , 2, 2
[,1] [,2] [,3] [,4]
[1,] 4 16 28 40
[2,] 8 20 32 44
[3,] 12 24 36 48

outer()是更为强大的外积运算函数,outer(x,y)计算向量x与y的外积,它等价于x %o%y
函数。outer()的一般调用格式为
outer(x,y,fun=”*”)

det(x),求矩阵x的行列式值

qr(x)$rank求x矩阵的秩

解线性方程组和求矩阵的逆矩阵

以上是关于R语言的一些矩阵运算的主要内容,如果未能解决你的问题,请参考以下文章

R语言矩阵运算

如何运用matlab矩阵运算求解线性方程组

一句python两句R:标量向量矩阵列表/字典的基本运算差异(持续更新中)

R语言初级教程(15): 矩阵(下篇)

一句python两句R:矩阵与向量的基本运算

一句python两句R:矩阵与向量的基本运算