洛谷——P1227 [JSOI2008]完美的对称

Posted

tags:

篇首语:本文由小常识网(cha138.com)小编为大家整理,主要介绍了洛谷——P1227 [JSOI2008]完美的对称相关的知识,希望对你有一定的参考价值。

P1227 [JSOI2008]完美的对称

题目描述

在峰会期间,必须使用许多保镖保卫参加会议的各国代表。代表们除了由他自己的随身保镖保护外,组委会还指派了一些其他的特工和阻击手保护他们。为了使他们的工作卓有成效,使被保卫的人的安全尽可能得到保障,保镖被分配到被保护人的各个方向。

保镖的最佳站立位置应该是这样的:被保护人应站在所有保镖的对称中心。但是,只要被保

护人一移动,保镖就很难根据要人的新位置调整位置。大多数的特工都很难对此作出实时调整。

因此,安全部长决定将该过程逆转一下,保镖先站好自己的位置,然后要人在他们的对称中心找到合适的位置。如果要人随便走动,我们就对他的安全不必负责。

你的工作是使这个过程自动操作。给出一组N个点(保镖的位置),你要找出它们的对称中心S,在这儿被保护人将相对安全。下面以此类推。

首先我们给定一点A以及对称中心S,点A‘是点A以S为对称中心形成的像点,即点S是线段AA‘的对称中心。

点阵组(X)以S为中心的像点是由每个点的像点组成的点阵组。X是用来产生对称中心S的,即点阵X以S为中心的像点的集合即为点阵X本身。

技术分享

输入输出格式

输入格式:

 

输入文件第一行是一个整数N,1<=N<=20000,接下来的N行每行包含用空格隔开的两个整数Xi和Yi,-100000<=Xi,Yi<=100000,表示这组点阵中第I个点的笛卡尔坐标值。

因为任何两个保镖都不会站在同一个位置上,所以在给定的作业中,任何两点都不相同。但注意保镖可以站在被保护人相同的位置。

 

输出格式:

 

输出文件仅有一行。如果给定的点阵能产生一个对称中心,则输出“V.I.P. should stay at (x,y).”,其中X和Y代表中心的笛卡尔坐标值,格式为四舍五入保留至小数点后一位。

如果该组点阵无对称中心,输出"This is a dangerous situation!",注意输出时除了两个单词之间用一个空格隔开外,不要输出多余空格。

 

输入输出样例

输入样例#1:
8
1 10
3 6
6 8
6 2
3 -4
1 0
-2 -2
-2 4
输出样例#1:
V.I.P. should stay at (2.0,3.0).

说明

[JSOI2008]第二轮

 

宝宝不明白这个题为什么会是省选的题、、

技术分享
#include<cstdio>
#include<cstring>
#include<iostream>
#include<algorithm>
#define N 20001
using namespace std;
double xx,yy;
int n,sx,sy,x[N],y[N];
int read()
{
    int x=0,f=1; char ch=getchar();
    while(ch<0||ch>9){if(ch==-)f=-1;ch=getchar();}
    while(ch>=0&&ch<=9) x=x*10+ch-0,ch=getchar();
    return x*f;
}
int main()
{
    n=read();
    for(int i=1;i<=n;i++)
     x[i]=read(),y[i]=read(),sx+=x[i],sy+=y[i];
    xx=1.0*sx/n,yy=1.0*sy/n;
    printf("V.I.P. should stay at (%.1lf,%.1lf).",xx,yy);
    return 0;
}
64分代码(没有考虑没有对称中心的情况,其实我认为应该是都有对称中心的)

我们知道对称中心一定是一组对称数的中间位置,如果这些数有对称中心的话,所有的对称点到对称中心的位置是相同的,对称中心的位置即为这两个数x的中间,y为这两个数y的中间,我们可以直接将这些直接加起来然后在除以数的个数,这算出来的应该是对称中心,然后我们在判断这些点的对称中心在不在这个地方

一对对称点一定是如果一个点的x小,那么另一个的x一定大,这样我们排一下序,看一下是对称点的两个数的对称点是否在这个位置

技术分享
#include<cstdio>
#include<cstring>
#include<iostream>
#include<algorithm>
#define N 20001
using namespace std;
double xx,yy;
int n,sx,sy;
int read()
{
    int x=0,f=1; char ch=getchar();
    while(ch<0||ch>9){if(ch==-)f=-1;ch=getchar();}
    while(ch>=0&&ch<=9) x=x*10+ch-0,ch=getchar();
    return x*f;
}
struct A
{
    int x,y;
}a[N];
int cmp(A a,A b)
{
    if(a.x!=b.x) return a.x<b.x;
    if(a.y!=b.y) return a.y<b.y; 
}
int main()
{
    n=read();
    for(int i=1;i<=n;i++)
     a[i].x=read(),a[i].y=read(),sx+=a[i].x,sy+=a[i].y;
    xx=1.0*sx/n,yy=1.0*sy/n;
    sort(a+1,a+1+n,cmp);
    for(int i=1;i<=n;i++)
     if(1.0*(a[i].x+a[n-i+1].x)/2!=xx||1.0*(a[i].y+a[n-i+1].y)/2!=yy) 
      {
          printf("This is a dangerous situation!");
          return 0;
      }
    printf("V.I.P. should stay at (%.1lf,%.1lf).",xx,yy);
    return 0;
}
AC代码

 

以上是关于洛谷——P1227 [JSOI2008]完美的对称的主要内容,如果未能解决你的问题,请参考以下文章

洛谷 P1227 [JSOI2008]完美的对称

洛谷 P1227 [JSOI2008]完美的对称

洛谷P1227 [JSOI2008]完美的对称

[JSOI2008]完美的对称

[JSOI2008] 完美的对称

BZOJ——1012: [JSOI2008]最大数maxnumber || 洛谷—— P1198 [JSOI2008]最大数