高性能网络I/O框架-netmap源码分析

Posted linux大本营

tags:

篇首语:本文由小常识网(cha138.com)小编为大家整理,主要介绍了高性能网络I/O框架-netmap源码分析相关的知识,希望对你有一定的参考价值。

前几天听一个朋友提到这个netmap,看了它的介绍和设计,确实是个好东西。其设计思想与业界不谋而合——因为为了提高性能,几个性能瓶颈放在那里,解决方法自然也是类似的。

netmap的出现,它既实现了一个高性能的网络I/O框架,代码量又不算大,非常适合学习和研究。

netmap简单介绍

首先要感谢netmap的作者,创造出了netmap并无私的分享了他的设计和代码。netmap的文档写得很不错,这里我简单说明一下为什么netmap可以达到高性能。

1. 利用mmap,将网卡驱动的ring内存空间映射到用户空间。这样用户态可以直接访问到原始的数据包,避免了内核和用户态的两次拷贝;——前两天我还想写这么一个东西呢。

2. 利用预先分配的固定大小的buff来保存数据包。这样减少了内核原有的动态分配;——对于网络设备来说,固定大小的内存池比buddy要有效的多。之前我跟Bean_lee也提过此事呵。

3. 批量处理数据包。这样就减少了系统调用;

更具体的内容,大家直接去netmap的官方网站上看吧,写得很详细。虽然英文,大家还是耐着性子好好看看,收获良多。

netmap的源码分析

从上面netmap的简单介绍中可以看到,netmap不可避免的要修改网卡驱动。不过这个修改量很小。

驱动的修改

下面我以e1000.c为例来分析。由于netmap最早是在FreeBSD上实现的,为了在linux达到最小的修改,使用了大量的宏,这给代码的阅读带来了一些困难。

e1000_probe的修改 俺不是写驱动的。。。e1000_probe里面很多代码看不明白,但是不影响我们对netmap的分析。通过netmap的patch,知道是在e1000完成一系列硬件初始化以后,并注册成功,这时调用e1000_netmap_attach

@@ -1175,6 +1183,10 @@ static int __devinit e1000_probe(struct
if (err)
goto err_register;

+#ifdef DEV_NETMAP
+   e1000_netmap_attach(adapter);
+#endif /* DEV_NETMAP */
+ 

/* print bus type/speed/width info */
e_info(probe, "(PCI%s:%dMHz:%d-bit) %pM\\n",
((hw->bus_type == e1000_bus_type_pcix) ? "-X" : ""),

下面是e1000_netmap_attach的代码

01.static void02.e1000_netmap_attach(struct SOFTC_T *adapter)03.04.struct netmap_adapter na;05.bzero(&na, sizeof(na));06. 07.na.ifp = adapter->netdev;08.na.separate_locks = 0;09.na.num_tx_desc = adapter->tx_ring[0].count;10.na.num_rx_desc = adapter->rx_ring[0].count;11.na.nm_register = e1000_netmap_reg;12.na.nm_txsync = e1000_netmap_txsync;13.na.nm_rxsync = e1000_netmap_rxsync;14.netmap_attach(&na, 1);15. 

SOFTC_T是一个宏定义,对于e1000,实际上是e1000_adapter,即e1000网卡驱动对应的private data。 下面是struct netmap_adapter的定义

/*
* This struct extends the 'struct adapter' (or
* equivalent) device descriptor. It contains all fields needed to
* support netmap operation.
*/
struct netmap_adapter 
/*
* On linux we do not have a good way to tell if an interface
* is netmap-capable. So we use the following trick:
* NA(ifp) points here, and the first entry (which hopefully
* always exists and is at least 32 bits) contains a magic
* value which we can use to detect that the interface is good.
*/
uint32_t magic;
uint32_t na_flags;  /* future place for IFCAP_NETMAP */
int refcount; /* number of user-space descriptors using this
interface, which is equal to the number of
struct netmap_if objs in the mapped region. */
/*
* The selwakeup in the interrupt thread can use per-ring
* and/or global wait queues. We track how many clients
* of each type we have so we can optimize the drivers,
* and especially avoid huge contention on the locks.
*/
int na_single;  /* threads attached to a single hw queue */
int na_multi;   /* threads attached to multiple hw queues */
 
int separate_locks; /* set if the interface suports different
locks for rx, tx and core. */
 
u_int num_rx_rings; /* number of adapter receive rings */
u_int num_tx_rings; /* number of adapter transmit rings */
 
u_int num_tx_desc; /* number of descriptor in each queue */
u_int num_rx_desc;
 
 
/* tx_rings and rx_rings are private but allocated
* as a contiguous chunk of memory. Each array has
* N+1 entries, for the adapter queues and for the host queue.
*/
struct netmap_kring *tx_rings; /* array of TX rings. */
struct netmap_kring *rx_rings; /* array of RX rings. */
 
NM_SELINFO_T tx_si, rx_si;  /* global wait queues */
 
/* copy of if_qflush and if_transmit pointers, to intercept
* packets from the network stack when netmap is active.
*/
int     (*if_transmit)(struct ifnet *, struct mbuf *);
 
/* references to the ifnet and device routines, used by
* the generic netmap functions.
*/
struct ifnet *ifp; /* adapter is ifp->if_softc */
 
NM_LOCK_T core_lock;    /* used if no device lock available */
 
int (*nm_register)(struct ifnet *, int onoff);
void (*nm_lock)(struct ifnet *, int what, u_int ringid);
int (*nm_txsync)(struct ifnet *, u_int ring, int lock);
int (*nm_rxsync)(struct ifnet *, u_int ring, int lock);
 
int bdg_port;
#ifdef linux
struct net_device_ops nm_ndo;
int if_refcount;    // XXX additions for bridge
#endif /* linux */
;

从struct netmap_adapter可以看出,netmap的注释是相当详细。所以后面,我不再列出netmap的结构体定义,大家可以自己查看,免得满篇全是代码。————这样的注释,有几个公司能够做到?

相关视频推荐

《tcpip详解卷一》:150行代码拉开协议栈实现的篇章

从netmap到dpdk,从硬件到协议栈,4个维度让网络体系构建起来

35岁程序员的代码之路,C++该学习哪些技术点呢?音视频、嵌入式开发、后端开发如何选择?

免费学习地址:c/c++ linux服务器开发/后台架构师

需要C/C++ Linux服务器架构师学习资料加群812855908(资料包括C/C++,Linux,golang技术,内核,nginx,ZeroMQ,mysql,Redis,fastdfs,MongoDB,ZK,流媒体,CDN,P2P,K8S,Docker,TCP/IP,协程,DPDK,ffmpeg,大厂面试题 等)

 e1000_netmap_attach完成简单的初始化工作以后,调用netmap_attach执行真正的attach工作。前者是完成与具体驱动相关的attach工作或者说是准备工作,而后者则是真正的attach。

int
netmap_attach(struct netmap_adapter *na, int num_queues)

    int n, size;
    void *buf;
    /* 这里ifnet又是一个宏,linux下ifnet实际上是net_device */
    struct ifnet *ifp = na->ifp;

    if (ifp == NULL) 
        D("ifp not set, giving up");
        return EINVAL;
    
    /* clear other fields ? */
    na->refcount = 0;
    /* 初始化接收和发送ring */
    if (na->num_tx_rings == 0)
        na->num_tx_rings = num_queues;
    na->num_rx_rings = num_queues;
    /* on each direction we have N+1 resources
     * 0..n-1   are the hardware rings
     * n        is the ring attached to the stack.
     */
    /* 
    这么详细的注释。。。还用得着我说吗?
    0到n-1的ring是用于转发的ring,而n是本机协议栈的队列
    n+1为哨兵位置
    */
    n = na->num_rx_rings + na->num_tx_rings + 2;
    /* netmap_adapter与其ring统一申请内存 */
    size = sizeof(*na) + n * sizeof(struct netmap_kring);

    /* 
    这里的malloc,实际上为kmalloc。  
    这里还有一个小trick。M_DEVBUF,M_NOWAIT和M_ZERO都是FreeBSD的定义。那么在linux下怎么使用呢? 
    我开始以为其被定义为linux对应的flag,如GFP_ATOMIC和__GFP_ZERO,于是grep了M_NOWAIT,也没有找到任何的宏定义。
    正在奇怪的时候,想到一种情况。让我们看看malloc的宏定义


    /* use volatile to fix a probable compiler error on 2.6.25 */
    #define malloc(_size, type, flags)                      \\
            ( volatile int _v = _size; kmalloc(_v, GFP_ATOMIC | __GFP_ZERO); )
    这里type和flags完全没有任何引用的地方。所以在linux下,上面的M_DEVBUG实际上直接被忽略掉了。
    */
    buf = malloc(size, M_DEVBUF, M_NOWAIT | M_ZERO);
    if (buf) 
        /* Linux下重用了struct net_device->ax25_ptr,用其保存buf的地址 */
        WNA(ifp) = buf;
        /* 初始化tx_rings和rx_rings,tx_rings和rx_rings之间用了一个额外的ring分隔,目前不知道这个ring是哨兵呢,还是本主机的ring */
        na->tx_rings = (void *)((char *)buf + sizeof(*na));
        na->rx_rings = na->tx_rings + na->num_tx_rings + 1;
        /* 复制netmap_device并设置对应的标志位,用于表示其为netmap_device*/
        bcopy(na, buf, sizeof(*na));
        NETMAP_SET_CAPABLE(ifp);

        na = buf;
        /* Core lock initialized here.  Others are initialized after
         * netmap_if_new.
         */
        mtx_init(&na->core_lock, "netmap core lock", MTX_NETWORK_LOCK,
            MTX_DEF);
        if (na->nm_lock == NULL) 
            ND("using default locks for %s", ifp->if_xname);
            na->nm_lock = netmap_lock_wrapper;
        
    
    /* 这几行Linux才用的上的代码,是为linux网卡的驱动框架准备的。未来有用处 */
#ifdef linux
    if (ifp->netdev_ops) 
        D("netdev_ops %p", ifp->netdev_ops);
        /* prepare a clone of the netdev ops */
        na->nm_ndo = *ifp->netdev_ops;
    
    na->nm_ndo.ndo_start_xmit = linux_netmap_start;
#endif
    D("%s for %s", buf ? "ok" : "failed", ifp->if_xname);

    return (buf ? 0 : ENOMEM);
 

完成了netmap_attach,e1000的probe函数e1000_probe即执行完毕。

前面e1000_probe的分析,按照Linux驱动框架,接下来就该e1000_open。netmap并没有对e1000_open进行任何修改,而是改动了e1000_configure,其会被e1000_open及e1000_up调用。

e1000_configure的修改

按照惯例,还是先看diff文件

@@ -393,6 +397,10 @@ static void e1000_configure(struct e1000
    e1000_configure_tx(adapter);
    e1000_setup_rctl(adapter);
    e1000_configure_rx(adapter);
+#ifdef DEV_NETMAP
+   if (e1000_netmap_init_buffers(adapter))
+       return;
+#endif /* DEV_NETMAP */
    /* call E1000_DESC_UNUSED which always leaves
    * at least 1 descriptor unused to make sure
    * next_to_use != next_to_clean */ 

从diff文件可以看出,netmap替代了原有的e1000申请ring buffer的代码。如果e1000_netmap_init_buffers成功返回,e1000_configure就直接退出了。

接下来进入e1000_netmap_init_buffers:

/*
* Make the tx and rx rings point to the netmap buffers.
*/
static int e1000_netmap_init_buffers(struct SOFTC_T *adapter)

    struct e1000_hw *hw = &adapter->hw;
    struct ifnet *ifp = adapter->netdev;
    struct netmap_adapter* na = NA(ifp);
    struct netmap_slot* slot;
    struct e1000_tx_ring* txr = &adapter->tx_ring[0];
    unsigned int i, r, si;
    uint64_t paddr;

    /* 
    还记得前面的netmap_attach吗?
    所谓的attach,即申请了netmap_adapter,并将net_device->ax25_ptr保存了指针,并设置了NETMAP_SET_CAPABLE。
    因此这里做一个sanity check,以免影响正常的网卡驱动
    */
    if (!na || !(na->ifp->if_capenable & IFCAP_NETMAP))
        return 0;
    /* e1000_no_rx_alloc如其名,为一个不该调用的函数,只输出一行错误日志 */
    adapter->alloc_rx_buf = e1000_no_rx_alloc;
    for (r = 0; r < na->num_rx_rings; r++) 
        struct e1000_rx_ring *rxr;
        /* 初始化对应的netmap对应的ring */
        slot = netmap_reset(na, NR_RX, r, 0);
        if (!slot) 
            D("strange, null netmap ring %d", r);
            return 0;
        
        /* 得到e1000对应的ring */
        rxr = &adapter->rx_ring[r];

        for (i = 0; i < rxr->count; i++) 
            // XXX the skb check and cleanup can go away
            struct e1000_buffer *bi = &rxr->buffer_info[i];
            /* 将当前的buff索引转换为netmap的buff索引 */
            si = netmap_idx_n2k(&na->rx_rings[r], i);
            /* 获得netmap的buff的物理地址 */
            PNMB(slot + si, &paddr);
            if (bi->skb)
                D("rx buf %d was set", i);
            bi->skb = NULL;
            // netmap_load_map(...)
            /* 现在网卡的这个buffer已经指向了netmap申请的buff地址了 */
            E1000_RX_DESC(*rxr, i)->buffer_addr = htole64(paddr);
        

        rxr->next_to_use = 0;

        /* 
        下面这几行代码没看明白怎么回事。
        有明白的同学指点一下,多谢。
        */
        /* preserve buffers already made available to clients */
        i = rxr->count - 1 - na->rx_rings[0].nr_hwavail;
        if (i < 0)
        i += rxr->count;
        D("i now is %d", i);
        wmb(); /* Force memory writes to complete */
        writel(i, hw->hw_addr + rxr->rdt);
    

    /* 
    初始化发送ring,与接收类似.
    区别在于没有考虑发送多队列。难道是因为e1000只可能是接收多队列,发送只可能是一个队列?
    这个问题不影响后面的代码阅读。咱们可以暂时将其假设为e1000只有一个发送队列
    */
    /* now initialize the tx ring(s) */
    slot = netmap_reset(na, NR_TX, 0, 0);
    for (i = 0; i < na->num_tx_desc; i++) 
        si = netmap_idx_n2k(&na->tx_rings[0], i);
        PNMB(slot + si, &paddr);
        // netmap_load_map(...)
        E1000_TX_DESC(*txr, i)->buffer_addr = htole64(paddr);
    
    return 1;
 

e1000cleanrx_irq的修改

@@ -3952,6 +3973,11 @@ static bool e1000_clean_rx_irq(struct e1
    bool cleaned = false;
    unsigned int total_rx_bytes=0, total_rx_packets=0;

+#ifdef DEV_NETMAP
+   ND("calling netmap_rx_irq");
+   if (netmap_rx_irq(netdev, 0, work_done))
+       return 1; /* seems to be ignored */
+#endif /* DEV_NETMAP */
    i = rx_ring->next_to_clean;
    rx_desc = E1000_RX_DESC(*rx_ring, i);
    buffer_info = &rx_ring->buffer_info[i]; 

进入netmap_rx_irq, int netmaprxirq(struct ifnet *ifp, int q, int *workdone) struct netmapadapter *na; struct netmap_kring *r; NMSELINFOT *main_wq;

 if (!(ifp->if_capenable & IFCAP_NETMAP))
        return 0;

    na = NA(ifp);

    /* 
    尽管函数名为rx,但实际上这个函数服务于rx和tx两种情况,用work_done做区分。
    */
    if (work_done)  /* RX path */
        r = na->rx_rings + q;
        r->nr_kflags |= NKR_PENDINTR;
        main_wq = (na->num_rx_rings > 1) ? &na->rx_si : NULL;
     else  /* tx path */
        r = na->tx_rings + q;
        main_wq = (na->num_tx_rings > 1) ? &na->tx_si : NULL;
        work_done = &q; /* dummy */
    


    /* 
    na->separate_locks只在ixgbe和bridge中会被设置为1。
    根据下面的代码,这个separate_locks表示多队列时,是每个队列使用一个锁。——这样可以提高性能
    其余的代码基本相同。都是唤醒等待数据的进程。
     */
    if (na->separate_locks) 
        mtx_lock(&r->q_lock);
        selwakeuppri(&r->si, PI_NET);
        mtx_unlock(&r->q_lock);
        if (main_wq) 
            mtx_lock(&na->core_lock);
            selwakeuppri(main_wq, PI_NET);
            mtx_unlock(&na->core_lock);
        
     else 
        mtx_lock(&na->core_lock);
        selwakeuppri(&r->si, PI_NET);
        if (main_wq)
            selwakeuppri(main_wq, PI_NET);
        mtx_unlock(&na->core_lock);
    
    *work_done = 1; /* do not fire napi again */
    return 1;
 

发送部分的修改与接收类似,就不重复了。

开始进入netmap的核心代码。一切从init开始。。。

netmap_init

Linux环境下,netmap使用动态模块加载,由linuxnetmapinit调用netmap_init。

static int
netmap_init(void)

    int error;

    /* 
    申请netmap的各个内存池,包括netmap_if,netmap_ring,netmap_buf以及内存池的管理结构
    */
    error = netmap_memory_init();
    if (error != 0) 
        printf("netmap: unable to initialize the memory allocator.\\n");
        return (error);
    
    printf("netmap: loaded module with %d Mbytes\\n",
        (int)(nm_mem->nm_totalsize >> 20));

    /* 
    在Linux上,调用的实际上是misc_register。make_dev为一共宏定义。
    创建一个名为netmap的misc设备,作为userspace和kernel的接口
    */
    netmap_dev = make_dev(&netmap_cdevsw, 0, UID_ROOT, GID_WHEEL, 0660,
                  "netmap");

#ifdef NM_BRIDGE
    
        int i;
        for (i = 0; i < NM_BRIDGES; i++)
            mtx_init(&nm_bridges[i].bdg_lock, "bdg lock", "bdg_lock", MTX_DEF);
    
#endif
    return (error);
 

netmapmemoryinit

netmap目前有两套内存分配管理代码,一个是netmapmem1.c,另一个是netmapmem2.c。默认使用的是后者。

static int
netmap_memory_init(void)

    struct netmap_obj_pool *p;

    /* 先申请netmap内存管理结构 */
    nm_mem = malloc(sizeof(struct netmap_mem_d), M_NETMAP,
                  M_WAITOK | M_ZERO);
    if (nm_mem == NULL)
        goto clean;

    /* netmap_if的内存池 */
    p = netmap_new_obj_allocator("netmap_if",
        NETMAP_IF_MAX_NUM, NETMAP_IF_MAX_SIZE);
    if (p == NULL)
        goto clean;
    nm_mem->nm_if_pool = p;

    /* netmap_ring的内存池 */
    p = netmap_new_obj_allocator("netmap_ring",
        NETMAP_RING_MAX_NUM, NETMAP_RING_MAX_SIZE);
    if (p == NULL)
        goto clean;
    nm_mem->nm_ring_pool = p;

    /* netmap_buf的内存池 */
    p = netmap_new_obj_allocator("netmap_buf",
        NETMAP_BUF_MAX_NUM, NETMAP_BUF_SIZE);
    if (p == NULL)
        goto clean;

    /* 对于netmap_buf,为了以后的使用方便,将其中的一些信息保存到其它明确的全局变量中 */
    netmap_total_buffers = p->objtotal;
    netmap_buffer_lut = p->lut;
    nm_mem->nm_buf_pool = p;
    netmap_buffer_base = p->lut[0].vaddr;


    mtx_init(&nm_mem->nm_mtx, "netmap memory allocator lock", NULL,
         MTX_DEF);

    nm_mem->nm_totalsize =
        nm_mem->nm_if_pool->_memtotal +
        nm_mem->nm_ring_pool->_memtotal +
        nm_mem->nm_buf_pool->_memtotal;

    D("Have %d KB for interfaces, %d KB for rings and %d MB for buffers",
        nm_mem->nm_if_pool->_memtotal >> 10,
        nm_mem->nm_ring_pool->_memtotal >> 10,
        nm_mem->nm_buf_pool->_memtotal >> 20);
    return 0;

clean:
    if (nm_mem) 
        netmap_destroy_obj_allocator(nm_mem->nm_ring_pool);
        netmap_destroy_obj_allocator(nm_mem->nm_if_pool);
        free(nm_mem, M_NETMAP);
    
    return ENOMEM;
 

netmapnewobj_allocator

进入内存池的申请函数——这是netmap中比较长的函数了。

static struct netmap_obj_pool *
netmap_new_obj_allocator(const char *name, u_int objtotal, u_int objsize)

    struct netmap_obj_pool *p;
    int i, n;
    u_int clustsize;    /* the cluster size, multiple of page size */
    u_int clustentries; /* how many objects per entry */

#define MAX_CLUSTSIZE   (1<<17)
#define LINE_ROUND  64
    /* 这个检查应该是netmap不允许申请过于大的结构的内存池 */
    if (objsize >= MAX_CLUSTSIZE) 
        /* we could do it but there is no point */
        D("unsupported allocation for %d bytes", objsize);
        return NULL;
    

    /* 
    让obj的size取整到64字节。为啥呢? 
    因为CPU的cache line大小一般是64字节。所以object的size如果和cache line对齐,可以获得更好的性能。
    关于cache line对性能的影响,可以看一下我以前写得一篇博文《多核编程:选择合适的结构体大小,提高多核并发性能》
    */
    /* make sure objsize is a multiple of LINE_ROUND */
    i = (objsize & (LINE_ROUND - 1));
    if (i) 
        D("XXX aligning object by %d bytes", LINE_ROUND - i);
        objsize += LINE_ROUND - i;
    
    /*
     * Compute number of objects using a brute-force approach:
     * given a max cluster size,
     * we try to fill it with objects keeping track of the
     * wasted space to the next page boundary.
     */
    /*
    这里有一个概念:cluster。
    暂时没有找到相关的文档介绍这里的cluster的概念。
    这里,我只能凭借下面的代码来说一下我的理解:
    cluster是一组内存池分配对象object的集合。为什么要有这么一个集合呢?
    众所周知,Linux的内存管理是基于页的。而object的大小或小于一个页,或大于一个页。如果基于object本身进行内存分配,会造成内存的浪费。
    所以这里引入了cluster的概念,它占用一个或多个连续页。这些页的内存大小或为object大小的整数倍,或者是浪费空间最小。
    下面的方法是一个比较激进的计算cluster的方法,它尽可能的追求上面的目标直到cluster的占用的大小超出设定的最大值——MAX_CLUSTSIZE。
    */
    for (clustentries = 0, i = 1;; i++) 
        u_int delta, used = i * objsize;
        /* 不能一味的增长cluster,最大占用空间为MAX_CLUSTSIZE */
        if (used > MAX_CLUSTSIZE)
            break;
        /* 最后页面占用的空间 */
        delta = used % PAGE_SIZE;
        if (delta == 0)  // exact solution
            clustentries = i;
            break;
        
        /* 这次利用页面空间的效率比上次的高,所以更新当前的clustentries,即cluster的个数*/
        if (delta > ( (clustentries*objsize) % PAGE_SIZE) )
            clustentries = i;
    
    // D("XXX --- ouch, delta %d (bad for buffers)", delta);
    /* compute clustsize and round to the next page */
    /* 得到cluster的大小,并将其与PAGE SIZE对齐 */
    clustsize = clustentries * objsize;
    i =  (clustsize & (PAGE_SIZE - 1));
    if (i)
        clustsize += PAGE_SIZE - i;
    D("objsize %d clustsize %d objects %d",
        objsize, clustsize, clustentries);

    /* 申请内存池管理结构的内存 */
    p = malloc(sizeof(struct netmap_obj_pool), M_NETMAP,
        M_WAITOK | M_ZERO);
    if (p == NULL) 
        D("Unable to create '%s' allocator", name);
        return NULL;
    
    /*
     * Allocate and initialize the lookup table.
     *
     * The number of clusters is n = ceil(objtotal/clustentries)
     * objtotal' = n * clustentries
     */
    /* 初始化内存池管理结构 */
    strncpy(p->name, name, sizeof(p->name));
    p->clustentries = clustentries;
    p->_clustsize = clustsize;
    /* 根据要设定的内存池object的数量,来调整cluster的个数 */
    n = (objtotal + clustentries - 1) / clustentries;
    p->_numclusters = n;
    /* 这是真正的内存池中的object的数量,通常是比传入的参数objtotal要多 */
    p->objtotal = n * clustentries;
    /* 为什么0和1是reserved,暂时不明。搁置争议,留给后面解决吧。:) */
    p->objfree = p->objtotal - 2; /* obj 0 and 1 are reserved */
    p->_objsize = objsize;
    p->_memtotal = p->_numclusters * p->_clustsize;

    /* 物理地址与虚拟地址对应的查询表 */
    p->lut = malloc(sizeof(struct lut_entry) * p->objtotal,
        M_NETMAP, M_WAITOK | M_ZERO);
    if (p->lut == NULL) 
        D("Unable to create lookup table for '%s' allocator", name);
        goto clean;
    

    /* Allocate the bitmap */
    /* 申请内存池位图,用于表示那个object被分配了 */
    n = (p->objtotal + 31) / 32;
    p->bitmap = malloc(sizeof(uint32_t) * n, M_NETMAP, M_WAITOK | M_ZERO);
    if (p->bitmap == NULL) 
        D("Unable to create bitmap (%d entries) for allocator '%s'", n,
            name);
        goto clean;
    
    /*
     * Allocate clusters, init pointers and bitmap
     */
    for (i = 0; i < p->objtotal;) 
        int lim = i + clustentries;
        char *clust;

        clust = contigmalloc(clustsize, M_NETMAP, M_WAITOK | M_ZERO,
            0, -1UL, PAGE_SIZE, 0);
        if (clust == NULL) 
            /*
             * If we get here, there is a severe memory shortage,
             * so halve the allocated memory to reclaim some.
             */
            D("Unable to create cluster at %d for '%s' allocator",
                i, name);
            lim = i / 2;
            for (; i >= lim; i--) 
                p->bitmap[ (i>>5) ] &=  ~( 1 << (i & 31) );
                if (i % clustentries == 0 && p->lut[i].vaddr)
                    contigfree(p->lut[i].vaddr,
                        p->_clustsize, M_NETMAP);
            
            p->objtotal = i;
            p->objfree = p->objtotal - 2;
            p->_numclusters = i / clustentries;
            p->_memtotal = p->_numclusters * p->_clustsize;
            break;
        
        /* 初始化位图即虚拟地址和物理地址插叙表 */
        for (; i < lim; i++, clust += objsize) 
            /* 
            1. bitmap是32位,所以i >> 5;
            2. 为什么(i&31),也是这个原因;—— 这就是代码的健壮性。
            */
            p->bitmap[ (i>>5) ] |=  ( 1 << (i & 31) );
            p->lut[i].vaddr = clust;
            p->lut[i].paddr = vtophys(clust);
        
    

    /* 与前面一样,保留第0位和第1位。再次搁置争议。。。 */
    p->bitmap[0] = ~3; /* objs 0 and 1 is always busy */
    D("Pre-allocated %d clusters (%d/%dKB) for '%s'",
        p->_numclusters, p->_clustsize >> 10,
        p->_memtotal >> 10, name);

    return p;

clean:
    netmap_destroy_obj_allocator(p);
    return NULL;
 

netmapnewobj_allocator的分析结束。关于netmap的内存管理,依然按照事件的主线分析,而不是集中将一部分搞定。

接下来就要从netmap的使用,自上而下的学习分析一下netmap的代码了。

netmap的应用示例

netmap的网站上给出了一个简单的例子——说简单,其实也涵盖了netmap的框架的调用。

struct netmap_if *nifp;
struct nmreq req;
int i, len;
char *buf;

fd = open("/dev/netmap", 0);
strcpy(req.nr_name, "ix0"); // register the interface
ioctl(fd, NIOCREG, &req); // offset of the structure
mem = mmap(NULL, req.nr_memsize, PROT_READ|PROT_WRITE, 0, fd, 0);
nifp = NETMAP_IF(mem, req.nr_offset);
for (;;) 
    struct pollfd x[1];
    struct netmap_ring *ring = NETMAP_RX_RING(nifp, 0);

    x[0].fd = fd;
    x[0].events = POLLIN;
    poll(x, 1, 1000);
    for ( ; ring->avail > 0 ; ring->avail--) 
        i = ring->cur;
        buf = NETMAP_BUF(ring, i);
        use_data(buf, ring->slot[i].len);
        ring->cur = NETMAP_NEXT(ring, i);
    
 

咱们还是一路走来,走到哪看到哪。

open操作

这个其实跟netmap没有多大关系。记得前文中的netmap注册了一个misc设备netmap_cdevsw吗?

static struct file_operations netmap_fops = 
    .mmap = linux_netmap_mmap,
    LIN_IOCTL_NAME = linux_netmap_ioctl,
    .poll = linux_netmap_poll,
    .release = netmap_release,
;

static struct miscdevice netmap_cdevsw =   /* same name as FreeBSD */
    MISC_DYNAMIC_MINOR,
    "netmap",
    &netmap_fops,
; 

netmapcdevsw为对应的设备结构体定义,netmapfops为对应的操作函数。这里面没有自定义的open函数,那么应该就使用linux内核默认的open——这个是我的推测,暂时不去查看linux代码了。

NIOCREG ioctl操作

ioctl就是内核的一个垃圾桶啊,什么都往里装,什么都能做。

netmap的ioctl

long
linux_netmap_ioctl(struct file *file, u_int cmd, u_long data /* arg */)

    int ret;
    struct nmreq nmr;
    bzero(&nmr, sizeof(nmr));

    /* 
    从上面的例子和这里可以看出,struct nmreq就是netmap内核与用户空间的消息结构体。
    两者的互动就靠它了。
    */
    if (data && copy_from_user(&nmr, (void *)data, sizeof(nmr) ) != 0)
        return -EFAULT;
    ret = netmap_ioctl(NULL, cmd, (caddr_t)&nmr, 0, (void *)file);
    if (data && copy_to_user((void*)data, &nmr, sizeof(nmr) ) != 0)
        return -EFAULT;
    return -ret;
 

进入netmap_ioctl,真正的netmap的ioctl处理函数

static int
netmap_ioctl(struct cdev *dev, u_long cmd, caddr_t data,
    int fflag, struct thread *td)

    struct netmap_priv_d *priv = NULL;
    struct ifnet *ifp;
    struct nmreq *nmr = (struct nmreq *) data;
    struct netmap_adapter *na;
    int error;
    u_int i, lim;
    struct netmap_if *nifp;

    /* 
    为了去除warning警告——没用的参数。
    void应用的一个小技巧
    */
    (void)dev;  /* UNUSED */
    (void)fflag;    /* UNUSED */

    /* Linux下这两个红都是空的 */
    CURVNET_SET(TD_TO_VNET(td));

    /* 
    devfs_get_cdevpriv在linux下是一个宏定义。
    得到struct file->private_data;
    当private_data不为NULL时,返回0;为null时,返回ENOENT。
    所以对于linux,后面的条件判断永远为假
    */
    error = devfs_get_cdevpriv((void **)&priv);
    if (error != ENOENT && error != 0) 
        CURVNET_RESTORE();
        return (error);
    

    error = 0;  /* Could be ENOENT */
    /* 
    又可见到高手代码健壮性的体现。
    对于运行在kernel中的代码,一定要稳定!强制保证nmr->nr_name字符串长度的合法性
    */
    nmr->nr_name[sizeof(nmr->nr_name) - 1] = '\\0';  /* truncate name */

    。。。。。。 。。。。。。 

为了流程的清楚,对于netmap_ioctl的分析就到这里。依然按照之前的使用的流程走。

写到这里我发现netmap网站给的实例应该是老古董了。按照netmap当前的代码,上面的例子根本无法使用。不过木已成舟,大家凑合意会理解这个例子吧,还好流程没有太大的变化。

既然示例代码不可信了,那么就按照ioctl支持的命令顺序,来分析netmap吧。

NIOCGINFO

用于返回netmap的基本信息

case NIOCGINFO:     /* return capabilities etc */
    /* memsize is always valid */
    /* 
    如果是我写,我可能先去做后面的版本检查
    netmap这样选择,应该是因为这些信息与版本无关。
     */
    nmr->nr_memsize = nm_mem->nm_totalsize;
    nmr->nr_offset = 0;
    nmr->nr_rx_rings = nmr->nr_tx_rings = 0;
    nmr->nr_rx_slots = nmr->nr_tx_slots = 0;
    if (nmr->nr_version != NETMAP_API) 
        D("API mismatch got %d have %d",
            nmr->nr_version, NETMAP_API);
        nmr->nr_version = NETMAP_API;
        error = EINVAL;
        break;
    
    if (nmr->nr_name[0] == '\\0')    /* just get memory info */
        break;
    /* 
    Linux下调用dev_get_by_name通过网卡名得到网卡struct net_device。
    并且通过NETMAP_CAPABLE来检查netmap是否attach了这个net_device——忘记NETMAP_CAPABLE和attach的同学请自行查看前面几篇文章。
    */
    error = get_ifp(nmr->nr_name, &ifp); /* get a refcount */
    if (error)
        break;
    /* 得到attach到网卡结构的netmap结构体 */
    na = NA(ifp); /* retrieve netmap_adapter */
    /* 得到ring的个数,以及每个ring有多少slot */
    nmr->nr_rx_rings = na->num_rx_rings;
    nmr->nr_tx_rings = na->num_tx_rings;
    nmr->nr_rx_slots = na->num_rx_desc;
    nmr->nr_tx_slots = na->num_tx_desc;
    nm_if_rele(ifp);    /* return the refcount */
    break; 

NIOCREGIF

将特定的网卡设置为netmap模式

case NIOCREGIF:
    if (nmr->nr_version != NETMAP_API) 
        nmr->nr_version = NETMAP_API;
        error = EINVAL;
        break;
    
    if (priv != NULL)  /* thread already registered */
        /* 重新设置对哪个ring感兴趣,这个函数,留到后面说 */
        error = netmap_set_ringid(priv, nmr->nr_ringid);
        break;
    
    /* 下面几行拿到netmap_device结构的代码,和NIOCGINFO case没什么区别 */
    /* find the interface and a reference */
    error = get_ifp(nmr->nr_name, &ifp); /* keep reference */
    if (error)
        break;
    na = NA(ifp); /* retrieve netmap adapter */

    /*
     * Allocate the private per-thread structure.
     * XXX perhaps we can use a blocking malloc ?
     */
    priv = malloc(sizeof(struct netmap_priv_d), M_DEVBUF,
              M_NOWAIT | M_ZERO);
    if (priv == NULL) 
        error = ENOMEM;
        nm_if_rele(ifp);   /* return the refcount */
        break;
    

    /* 这里循环等待net_device可用 */
    for (i = 10; i > 0; i--) 
        na->nm_lock(ifp, NETMAP_REG_LOCK, 0);
        if (!NETMAP_DELETING(na))
            break;
        na->nm_lock(ifp, NETMAP_REG_UNLOCK, 0);
        tsleep(na, 0, "NIOCREGIF", hz/10);
    
    if (i == 0) 
        D("too many NIOCREGIF attempts, give up");
        error = EINVAL;
        free(priv, M_DEVBUF);
        nm_if_rele(ifp);    /* return the refcount */
        break;
    

    /* 保存设备net_device指针*/
    priv->np_ifp = ifp; /* store the reference */
    /* 设置感兴趣的ring,即准备哪些ring来与用户态交互 */
    error = netmap_set_ringid(priv, nmr->nr_ringid);
    if (error)
        goto error;
    /* 
    每一个netmap的描述符,对应每一个网卡,都有一个struct netmap_if, 即priv->np_nifp.
    */
    priv->np_nifp = nifp = netmap_if_new(nmr->nr_name, na);
    if (nifp == NULL)  /* allocation failed */
        error = ENOMEM;
     else if (ifp->if_capenable & IFCAP_NETMAP) 
        /* was already set */
        /* 网卡对应的netmap_device的扩展已经设置过了 */
     else 
        /* Otherwise set the card in netmap mode
         * and make it use the shared buffers.
         */
        /* 这时,这块网卡真正要进入netmap模式,开始初始化一些成员变量 */
        for (i = 0 ; i < na->num_tx_rings + 1; i++)
            mtx_init(&na->tx_rings[i].q_lock, "nm_txq_lock", MTX_NETWORK_LOCK, MTX_DEF);
        for (i = 0 ; i < na->num_rx_rings + 1; i++) 
            mtx_init(&na->rx_rings[i].q_lock, "nm_rxq_lock", MTX_NETWORK_LOCK, MTX_DEF);
        
        /* 
        设置网卡为netmap mode为打开模式
        对于e1000驱动来说,nm_register即e1000_netmap_reg
        */
        error = na->nm_register(ifp, 1); /* mode on */
        if (error)
            netmap_dtor_locked(priv);
    

    if (error)     /* reg. failed, release priv and ref */
error:
        na->nm_lock(ifp, NETMAP_REG_UNLOCK, 0);
        nm_if_rele(ifp);    /* return the refcount */
        bzero(priv, sizeof(*priv));
        free(priv, M_DEVBUF);
        break;
    

    na->nm_lock(ifp, NETMAP_REG_UNLOCK, 0);
    /* Linux平台,将priv保存到file->private_data*/
    error = devfs_set_cdevpriv(priv, netmap_dtor);

    if (error != 0) 
        /* could not assign the private storage for the
         * thread, call the destructor explicitly.
         */
        netmap_dtor(priv);
        break;
    

    /* return the offset of the netmap_if object */
    nmr->nr_rx_rings = na->num_rx_rings;
    nmr->nr_tx_rings = na->num_tx_rings;
    nmr->nr_rx_slots = na->num_rx_desc;
    nmr->nr_tx_slots = na->num_tx_desc;
    nmr->nr_memsize = nm_mem->nm_totalsize;
    /* 
    得到nifp在内存池中的偏移。
    因为netmap的基础就是利用内核与用户空间的内存共享。但是众所周知,内核和用户空间的地址范围是不用的。
    这样同样的物理内存,在内核态和用户态地址肯定不同。所以必须利用偏移来对应相同的内存。
    */
    nmr->nr_offset = netmap_if_offset(nifp);
    break; 

netmap_ioctl

分析完了NIOCGINFO和NIOCREGIF两个,剩下的比较简单了。接下来是netmap_ioctl调用的函数

NIOCUNREGIF

case NIOCUNREGIF:
    if (priv == NULL) 
        /* 没有priv肯定是不对的,肯定是没有调用过NIOCREGIF */
        error = ENXIO;
        break;
    

    /* the interface is unregistered inside the
       destructor of the private data. */
    /* 释放priv内存*/
    devfs_clear_cdevpriv();
    break; 

NIOCTXSYNC和NIOCRXSYNC

这两个使用相同的代码。

case NIOCTXSYNC:
case NIOCRXSYNC:
    /* 检查priv,确保之前调用了NIOCREGIF */
    if (priv == NULL) 
        error = ENXIO;
        break;
    
    /* 
    记得之前分析NIOCREGIF时,priv->np_ifp保存了net_device指针,所有现在可以直接获得这个指针。
    要不要担心net_device指针的有效性呢?不用,因为NIOCREGIF时,在得到net_device时,已经增加了计数
    */
    ifp = priv->np_ifp; /* we have a reference */
    na = NA(ifp); /* retrieve netmap adapter */

    /* 
    np_qfirst表示需要检查的第一个ring 
    当其值为NETMAP_SW_RING是一个特殊的值,表示处理host的ring
    */
    if (priv->np_qfirst == NETMAP_SW_RING)  /* host rings */
        /* 
        对于host ring处理,这个地方的代码有点奇怪。
        当cmd是NIOCTXSYNC,是将数据包传给host;
        当cmd是NIOCRXSYNC,是将数据包从host发送出去;
        感觉好像写反了。我给作者发了邮件,不知道能不能得到回复。
        反正从语义上,我是觉得有问题。


        现在已经得到了作者的回复——再次感叹外国人的友好。这里的方向,是以netmap的角度去看。
        所以,当cmd是txsync时,是netmap把包送出去,那么自然是交给host。反之亦然。
        */
        if (cmd == NIOCTXSYNC)
            netmap_sync_to_host(na);
        else
            netmap_sync_from_host(na, NULL, NULL);
        break;
    

    /* find the last ring to scan */
    /* 
    得到需要检查的最后一个ring,如果是NETMAP_HW_RING,那么就是最大ring数值 
    关于np_qfirst和np_qlast,等看到netmap_set_ringid时,大家就明白了
    */
    lim = priv->np_qlast;
    if (lim == NETMAP_HW_RING)
        lim = (cmd == NIOCTXSYNC) ?
            na->num_tx_rings : na->num_rx_rings;

    /* 从第一个开始遍历每个ring */
    for (i = priv->np_qfirst; i < lim; i++) 
        if (cmd == NIOCTXSYNC) 
            struct netmap_kring *kring = &na->tx_rings[i];
            if (netmap_verbose & NM_VERB_TXSYNC)
                D("pre txsync ring %d cur %d hwcur %d",
                    i, kring->ring->cur,
                    kring->nr_hwcur);
            /* 执行发送工作,留到后面分析 */
            na->nm_txsync(ifp, i, 1 /* do lock */);
            if (netmap_verbose & NM_VERB_TXSYNC)
                D("post txsync ring %d cur %d hwcur %d",
                    i, kring->ring->cur,
                    kring->nr_hwcur);
         else 
            /* 执行接收工作,留到后面分析*/
            na->nm_rxsync(ifp, i, 1 /* do lock */);
            /* 
            在linux平台上,实际上是调用了do_gettimeofday,不知道为什么接收需要的这个时间
            看看以后是不是可以知道原因。
            */
            microtime(&na->rx_rings[i].ring->ts);
        
     

到此,netmap_ioctl分析学习完毕。

netmap_set_ringid

static int
netmap_set_ringid(struct netmap_priv_d *priv, u_int ringid)

    struct ifnet *ifp = priv->np_ifp;
    struct netmap_adapter *na = NA(ifp);

    /*
    从下面三个宏,可以得知ringid是一个“复用”的结构。低24位用于表示id值,高位作为标志。
    #define NETMAP_HW_RING  0x4000      /* low bits indicate one hw ring */
    #define NETMAP_SW_RING  0x2000      /* process the sw ring */
    #define NETMAP_NO_TX_POLL   0x1000  /* no automatic txsync on poll */
    #define NETMAP_RING_MASK 0xfff      /* the ring number */
    */
    u_int i = ringid & NETMAP_RING_MASK;
    /*
    根据注释,在初始化阶段,np_qfirst和np_qlast相等,不需要锁保护。
    关于这点我没想明白。如果两个线程同时进入怎么办?
    */
    /* initially (np_qfirst == np_qlast) we don't want to lock */
    int need_lock = (priv->np_qfirst != priv->np_qlast);
    int lim = na->num_rx_rings;

    /* 上限取发送和接收队列数量的最大值 */
    if (na->num_tx_rings > lim)
        lim = na->num_tx_rings;
    /* 当处理HW ring时,要对id进行有效性判断 */
    if ( (ringid & NETMAP_HW_RING) && i >= lim) 
        D("invalid ring id %d", i);
        return (EINVAL);
    
    if (need_lock)
        na->nm_lock(ifp, NETMAP_CORE_LOCK, 0);
    priv->np_ringid = ringid;
    /*
    根据三种标志,设置正确的np_qfirst和qlast。从这里也可以看出,只有在初始化时,np_qfirst才可能等于np_qlast。 
    */
    if (ringid & NETMAP_SW_RING) 
        priv->np_qfirst = NETMAP_SW_RING;
        priv->np_qlast = 0;
     else if (ringid & NETMAP_HW_RING) 
        priv->np_qfirst = i;
        priv->np_qlast = i + 1;
     else 
        priv->np_qfirst = 0;
        priv->np_qlast = NETMAP_HW_RING ;
    
    /* 是否在执行接收数据包的poll时,发送数据包 */
    priv->np_txpoll = (ringid & NETMAP_NO_TX_POLL) ? 0 : 1;
    if (need_lock)
        na->nm_lock(ifp, NETMAP_CORE_UNLOCK, 0);
    if (ringid & NETMAP_SW_RING)
        D("ringid %s set to SW RING", ifp->if_xname);
    else if (ringid & NETMAP_HW_RING)
        D("ringid %s set to HW RING %d", ifp->if_xname,
            priv->np_qfirst);
    else
        D("ringid %s set to all %d HW RINGS", ifp->if_xname, lim);
    return 0;
 

netmap_ioctl分析完了,根据netmap的示例,下面该分析netmap的mmap的实现了。

定位netmap的mmap

前文提到过netmap会创建一个设备

static struct miscdevice netmap_cdevsw =   /* same name as FreeBSD */  
    MISC_DYNAMIC_MINOR,  
    "netmap",  
    &netmap_fops,  
; 

netmap_fops定义了netmap设备支持的操作

static struct file_operations netmap_fops = 
    .mmap = linux_netmap_mmap,
    LIN_IOCTL_NAME = linux_netmap_ioctl,
    .poll = linux_netmap_poll,
    .release = netmap_release,
; 

OK,现在我们找到了mmap的入口,linuxnetmapmmap。

linux_netmap_mmap分析

现在直接进入linux_netmap_mmap的代码

static int
linux_netmap_mmap(struct file *f, struct vm_area_struct *vma)

    int lut_skip, i, j;
    int user_skip = 0;
    struct lut_entry *l_entry;
    const struct netmap_obj_pool *p[] = 
        nm_mem->nm_if_pool,
        nm_mem->nm_ring_pool,
        nm_mem->nm_buf_pool ;
    /*
    * vma->vm_start: start of mapping user address space
    * vma->vm_end: end of the mapping user address space
    */

    /* 
    这里又是一个编程技巧,使用(void)f既不会产生任何真正的代码,又可以消除变量f没有使用的warning。
    为什么f不使用,还会出现在参数列表中呢?没办法啊,只是Linux框架决定的。linux_netmap_mmap只是一个注册回调,自然要遵从linux的框架了。
    */
    (void)f;    /* UNUSED */
    // XXX security checks

    for (i = 0; i < 3; i++)   /* loop through obj_pools */
        /*
         * In each pool memory is allocated in clusters
         * of size _clustsize , each containing clustentries
         * entries. For each object k we already store the
         * vtophys malling in lut[k] so we use that, scanning
         * the lut[] array in steps of clustentries,
         * and we map each cluster (not individual pages,
         * it would be overkill).
         */
        /* 
        上面的注释说的很明白。
        每个pool里的object都是由_clustsize组成的,每一个都包含clustertries个基础内存块。 一个pool公有_numclusters个基础内存块。
        所以,在进行内存映射的时候,user_skip表示已经映射的内存大小,vma->start+user_skip也就是当前未映射内存的起始地址,lut_skip表示当前待映射的物理内存池的块索引
        */
        for (lut_skip = 0, j = 0; j < p[i]->_numclusters; j++) 
            l_entry = &p[i]->lut[lut_skip];
            if (remap_pfn_range(vma, vma->vm_start + user_skip,
                    l_entry->paddr >> PAGE_SHIFT, p[i]->_clustsize,
                    vma->vm_page_prot))
                return -EAGAIN; // XXX check return value
            lut_skip += p[i]->clustentries;
            user_skip += p[i]->_clustsize;
        
    

    /* 
    循环执行完毕后,netmap在内核中的3个对象池已经完全映射到用户空间
    真正执行映射的函数是remap_pfn_range,这是内核函数,用于将内核空间映射到用户空间
    这个函数超出了本文的主题范围了,我们只需要知道它是做什么的就行了。 
    */

    return 0;
 

用户态得到对应网卡的netmap结构

在将netmap内核态的内存映射到用户空间以后,netmap的示例通过offset来得到对应网卡的netmap结构。

fd = open("/dev/netmap", 0);
strcpy(req.nr_name, "ix0"); // register the interface
ioctl(fd, NIOCREG, &req); // offset of the structure
mem = mmap(NULL, req.nr_memsize, PROT_READ|PROT_WRITE, 0, fd, 0);
nifp = NETMAP_IF(mem, req.nr_offset); 

在此例中,使用ioctl,得到req.nroffset是ix0网卡的netmap结构的偏移——准确的说是netmap管理网卡结构内存池的偏移。mmap后,mem是netmap内存的映射,而网卡结构内存是内存中的第一项,那么mem同样可以视为netmap管理网卡结构的内存池的起始地址。因此,利用前面的req.nroffset,就得到了ix0的netmap结构,即struct netmap_if。

走读netmap的示例中工作代码

按照netmap示例,马上就要进入netmap真正工作的代码了。

for (;;)   
    struct pollfd x[1];
    /*
    根据netmap的代码,NETMAP_RXRING的定义如下
    #define NETMAP_RXRING(nifp, index)          \\
        ((struct netmap_ring *)((char *)(nifp) +    \\
        (nifp)->ring_ofs[index + (nifp)->ni_tx_rings + 1] ) )
    得到该网卡的接收ring buffer。

    吐个槽,为什么英文接收Receive要缩写为RX呢。。。我在别的地方也见过。
    */
    struct netmap_ring *ring = NETMAP_RX_RING(nifp, 0);
    x[0].fd = fd;
    x[0].events = POLLIN;
    /* 超时1秒等接收事件发生 */
    poll(x, 1, 1000);
    /* 收到ring->avail个包 */
    for ( ; ring->avail > 0 ; ring->avail--) 
        /* 得到当前包索引 */
        i = ring->cur;
        /* 得到对应的数据包 */
        buf = NETMAP_BUF(ring, i);
        /* 用户态处理该数据包 */
        use_data(buf, ring->slot[i].len);
        /* 移到下一个待处理数据包 */
        ring->cur = NETMAP_NEXT(ring, i);
    
 

以上是关于高性能网络I/O框架-netmap源码分析的主要内容,如果未能解决你的问题,请参考以下文章

Twisted源码分析1

Twisted源码分析1

android 网络框架 源码分析

五种I/O模型和Java NIO源码分析

libevent源码分析--(转)

源码分析 -Netty:开篇