论文笔记:DropMessage: Unifying Random Dropping for Graph Neural Networks

Posted UQI-LIUWJ

tags:

篇首语:本文由小常识网(cha138.com)小编为大家整理,主要介绍了论文笔记:DropMessage: Unifying Random Dropping for Graph Neural Networks相关的知识,希望对你有一定的参考价值。

(AAAI 23 优秀论文)

1 intro

  • GNN的一个普遍思路是,每一层卷积层中,从邻居处聚合信息
    • 尽管GNN有显著的进步,但是在大规模图中训练GNN会遇到各种问题:
      • 过拟合
        • 过拟合之后,GNN的泛化能力就被限制了
      • 过渡平滑
        • 经过多轮邻居信息整合的迭代之后,GNN中不同点之前的表征会很相似
      • 不够鲁棒
        • 由于需要不断迭代聚合邻居信息,所以带有噪声的图可能会影响到GNN的表现

  • 上述提到的问题可以通过random dropping的方式解决
    • random dropping可以看作,通过对训练数据加噪声,缓解过拟合
    • DropOut
      • 对点的特征进行Drop out
    • DropEdge
      • 对图中的边进行drop out
    • DropNode
      • 对图中的点进行drop out
    • ——>他们都在一定程度上提升了GNN的表现
    • 但是一些开放性的问题仍然摆在random dropping问题前:
      • 引入GNN的随机噪声使得参数更难收敛,训练过程不稳定
      • 很难针对所有的图和所有的模型找到一个通用的最佳dropping方案来
      • 尚未有理论说明random dropping的有效性
  • 这篇Paper提出了一种新的random dropping方法,称之为DropMessage
    • 可以应用在所有基于信息传递的GNN中
    • 在消息矩阵上进行drop操作
      • ——>可以让同一个点向不同的邻居传递不同的消息
    • 将现有的random dropping方法整合到DropMessage中
    • 从理论层面证明了在GNN中添加random dropping,等价于提供了一个额外的正则项
    • 从信息论的角度,DropMessage保留了最多的信息多样性、是其他random dropping方法的上界

 2 Notation & Preliminary

2.1 记号

  • G=(V,E)表示图
    • 表示点集
    • E是边集
  • 节点特征矩阵为
  • 邻接矩阵是,Aij表示点vi和点vj之间的邻接关系
  • 每个点的度是
    • 图的度是
  • 我们有k条边(有向边),那么信息传递矩阵为
    • 每一行表示一条边上传递的信息

 2.2 GNN

  • message passing的GNN可以表示为
      • 表示第l层点vi的表征
      • N(i)是点vi的邻居
      • ej,i是点j到i的边
      • 是可微函数
      • AGG是一种聚合函数(比如SUM,MEAN等)
  • 为一个one-hot编码(每一行表示是这条边是由哪个点射出的)
    • 信息传递矩阵M可以表示为

3 DropMessage

3.1 方法介绍

  • 在信息传递矩阵M上进行drop操作
  • 记dropping rate为δ,那么δ|M|个M上的元素将会被mask掉
  • 记一个伯努利分布
    • 那么drop之后的信息传递矩阵为(分布为1的保留,所以伯努利分布的p为1-δ)
    • 为了让drop之后的信息传递矩阵的期望和drop之前的期望一致,对drop之后的信息传递矩阵乘以一个系数

3.2 整合之前的random dropping方法

之前的几种random dropping,都可以看作是DropMessage的特例

3.3 理论部分

  • GNN上的无偏随机丢弃,可以看成是给目标函数添加了一个额外的正则项,这可以使得模型更鲁棒

3.4 DropMessage的好处

  • 减少样本方差
    • 随机丢弃会在训练过程中引入噪声,使得训练过程不稳定
    • 在给定丢弃率δ的情况下,DropMessage有最小的样本方差
  • 定义信息多样性
    • 包括特征多样性和拓扑多样性
      • 特征多样性指从不同点中保留的特征维数的数量(就是有多少个特征没有被完全丢弃掉)
      • 拓扑多样性指多少条有向边上有信息传递
    • Dropout、DropEdge、DropNode都不能保持信息多样性,但是DropMessage可以

4 实验

 

 

以上是关于论文笔记:DropMessage: Unifying Random Dropping for Graph Neural Networks的主要内容,如果未能解决你的问题,请参考以下文章

论文阅读笔记

论文笔记-Deep Learning on Graphs: A Survey(上)

ILSVRC历届冠军论文笔记

Focal Loss 论文笔记

论文笔记之GPT-GNN: Generative Pre-Training of Graph Neural Networks

论文笔记目录