*Leetcode 72 编辑距离
Posted Z-Pilgrim
tags:
篇首语:本文由小常识网(cha138.com)小编为大家整理,主要介绍了*Leetcode 72 编辑距离相关的知识,希望对你有一定的参考价值。
dp[i][0] 和dp[j][0]需要单独处理
#include <iostream>
#include <cstring>
#include <cstdio>
#include <algorithm>
#include <cstdlib>
#include <set>
#include <vector>
#include <map>
#include <cmath>
#include <queue>
#include <map>
#include <set>
#include <string>
using namespace std;
//class Solution
//public:
// int minDistance(string word1, string word2)
// // dp[i][j] : ->i ->j对齐需要的最小操作数
// // dp[0][0]特殊处理
// // w[i] == w[j]:
// // dp[i][j] = min(dp[i-1][j]+1, dp[i-1][j-1], dp[i][j-1]+1);
// // w[i] != w[j]:
// // dp[i][j] = min(dp[i-1][j]+1, dp[i-1][j-1]+1, dp[i][j-1]+1);
// if(word1.size() == 0) return word2.size();
// if(word2.size() == 0) return word1.size();
// int dp[word1.size()][word2.size()];
// for (int i = 0; i < word1.size(); i++)
// for( int j = 0; j < word2.size(); j++)
// if(!i && !j)
// dp[i][j] = word1[i] == word2[j] ? 0:1;
// else
// dp[i][j] = 200000000;
// if(i) dp[i][j] = min(dp[i][j], dp[i-1][j]+1);
// if(j) dp[i][j] = min(dp[i][j], dp[i][j-1]+1);
// if(i && j)
// if(word1[i] == word2[j] )
// dp[i][j] = min(dp[i][j], dp[i-1][j-1]);
// else
// dp[i][j] = min(dp[i][j], dp[i-1][j-1]+1);
//
//
// printf("dp[%d][%d]=%d\\n", i+1, j+1, dp[i][j]);
//
//
//
// return dp[word1.size()-1][word2.size()-1];
//
//;
class Solution
public:
int minDistance(string word1, string word2)
// dp[i][j] : ->i ->j对齐需要的最小操作数
// dp[0][0]特殊处理
// w[i] == w[j]:
// dp[i][j] = min(dp[i-1][j]+1, dp[i-1][j-1], dp[i][j-1]+1);
// w[i] != w[j]:
// dp[i][j] = min(dp[i-1][j]+1, dp[i-1][j-1]+1, dp[i][j-1]+1);
if(word1.size() == 0) return word2.size();
if(word2.size() == 0) return word1.size();
int dp[word1.size()][word2.size()];
for (int i = 0; i < word1.size(); i++)
for( int j = 0; j < word2.size(); j++)
if(!i && !j)
dp[i][j] = word1[i] == word2[j] ? 0:1;
else
dp[i][j] = 200000000;
if(i) dp[i][j] = min(dp[i][j], dp[i-1][j]+1);
if(j) dp[i][j] = min(dp[i][j], dp[i][j-1]+1);
int v ;
if(i && j)
v = dp[i-1][j-1];
else
if(i) v = i;
else v = j;
if(word1[i] == word2[j] )
dp[i][j] = min(dp[i][j], v);
else
dp[i][j] = min(dp[i][j], v+1);
printf("dp[%d][%d]=%d\\n", i+1, j+1, dp[i][j]);
return dp[word1.size()-1][word2.size()-1];
;
class Solution2
public:
int minDistance(string word1, string word2)
int n = word1.length();
int m = word2.length();
// 有一个字符串为空串
if (n * m == 0) return n + m;
// DP 数组
vector<vector<int> > D(n + 1, vector<int>(m + 1));
// 边界状态初始化
for (int i = 0; i < n + 1; i++)
D[i][0] = i;
for (int j = 0; j < m + 1; j++)
D[0][j] = j;
// 计算所有 DP 值
for (int i = 1; i < n + 1; i++)
for (int j = 1; j < m + 1; j++)
int left = D[i - 1][j] + 1;
int down = D[i][j - 1] + 1;
int left_down = D[i - 1][j - 1];
if (word1[i - 1] != word2[j - 1]) left_down += 1;
D[i][j] = min(left, min(down, left_down));
printf("D[%d][%d]=%d\\n", i, j, D[i][j]);
return D[n][m];
;
int main(int argc, char *argv[])
string a = "sea",b ="eat";
Solution s1 = Solution();
Solution2 s2 = Solution2();
s1.minDistance(a,b);
cout << "*******\\n\\n\\n*******" << endl;
s2.minDistance(a,b);
return 0;
以上是关于*Leetcode 72 编辑距离的主要内容,如果未能解决你的问题,请参考以下文章