《Java知识应用》Java雪花算法的原理和实现

Posted 加速丨世界

tags:

篇首语:本文由小常识网(cha138.com)小编为大家整理,主要介绍了《Java知识应用》Java雪花算法的原理和实现相关的知识,希望对你有一定的参考价值。

SnowFlake 算法,是 Twitter 开源的分布式 id 生成算法。其核心思想就是:使用一个 64 bit 的 long 型的数字作为全局唯一 id。在分布式系统中的应用十分广泛,且ID 引入了时间戳,基本上保持自增的。

这 64 个 bit 中,其中 1 个 bit 是不用的,然后用其中的 41 bit 作为毫秒数,用 10 bit 作为工作机器 id,12 bit 作为序列号。

给大家举个例子吧,比如下面那个 64 bit 的 long 型数字:

第一个部分是 1 个 bit:0,这个是无意义的,因为二进制中第一位是符号位,1表示负数,0表示正数。

第二个部分是 41 个 bit:表示的是时间戳。

第三个部分是 5 个 bit:表示的是机房 id,10001。

第四个部分是 5 个 bit:表示的是机器 id,1 1001。

第五个部分是 12 个 bit:表示的序号,就是某个机房某台机器上这一毫秒内同时生成的 id 的序号,0000 00000000。

简单来说,你的某个服务假设要生成一个全局唯一 id,那么就可以发送一个请求给部署了 SnowFlake 算法的系统,由这个 SnowFlake 算法系统来生成唯一 id。

这个 SnowFlake 算法系统首先肯定是知道自己所在的机房和机器的,比如机房 id = 17,机器 id = 12。

接着 SnowFlake 算法系统接收到这个请求之后,首先就会用二进制位运算的方式生成一个 64 bit 的 long 型 id,64 个 bit 中的第一个 bit 是无意义的。

接着 41 个 bit,就可以用当前时间戳(单位到毫秒),然后接着 5 个 bit 设置上这个机房 id,还有 5 个 bit 设置上机器 id。 

最后再判断一下,当前这台机房的这台机器上这一毫秒内,这是第几个请求,给这次生成 id 的请求累加一个序号,作为最后的 12 个 bit。

雪花算法代码:

import java.lang.management.ManagementFactory;
import java.lang.management.RuntimeMXBean;
import java.net.NetworkInterface;
import java.net.SocketException;
import java.util.Enumeration;

/**
 * 雪花算法
 */
public class SnowFlake {

    private final static long twepoch = 12888349746579L;
    // 机器标识位数
    private final static long workerIdBits = 5L;
    // 数据中心标识位数
    private final static long datacenterIdBits = 5L;
    // 毫秒内自增位数
    private final static long sequenceBits = 12L;
    // 机器ID偏左移12位
    private final static long workerIdShift = sequenceBits;
    // 数据中心ID左移17位
    private final static long datacenterIdShift = sequenceBits + workerIdBits;
    // 时间毫秒左移22位
    private final static long timestampLeftShift = sequenceBits + workerIdBits + datacenterIdBits;
    //sequence掩码,确保sequnce不会超出上限
    private final static long sequenceMask = -1L ^ (-1L << sequenceBits);
    //上次时间戳
    private static long lastTimestamp = -1L;
    //序列
    private long sequence = 0L;
    //服务器ID
    private long workerId = 1L;
    private static long workerMask = -1L ^ (-1L << workerIdBits);
    //进程编码
    private long processId = 1L;
    private static long processMask = -1L ^ (-1L << datacenterIdBits);

    private static SnowFlake snowFlake = null;

    static{
        snowFlake = new SnowFlake();
    }
    public static synchronized long nextId(){
        return snowFlake.getNextId();
    }

    private SnowFlake() {
        //获取机器编码
        this.workerId=this.getMachineNum();
        //获取进程编码
        RuntimeMXBean runtimeMXBean = ManagementFactory.getRuntimeMXBean();
        this.processId=Long.valueOf(runtimeMXBean.getName().split("@")[0]).longValue();

        //避免编码超出最大值
        this.workerId=workerId & workerMask;
        this.processId=processId & processMask;
    }

    public synchronized long getNextId() {
        //获取时间戳
        long timestamp = timeGen();
        //如果时间戳小于上次时间戳则报错
        if (timestamp < lastTimestamp) {
            try {
                throw new Exception("Clock moved backwards.  Refusing to generate id for " + (lastTimestamp - timestamp) + " milliseconds");
            } catch (Exception e) {
                e.printStackTrace();
            }
        }
        //如果时间戳与上次时间戳相同
        if (lastTimestamp == timestamp) {
            // 当前毫秒内,则+1,与sequenceMask确保sequence不会超出上限
            sequence = (sequence + 1) & sequenceMask;
            if (sequence == 0) {
                // 当前毫秒内计数满了,则等待下一秒
                timestamp = tilNextMillis(lastTimestamp);
            }
        } else {
            sequence = 0;
        }
        lastTimestamp = timestamp;
        // ID偏移组合生成最终的ID,并返回ID
        long nextId = ((timestamp - twepoch) << timestampLeftShift) | (processId << datacenterIdShift) | (workerId << workerIdShift) | sequence;
        return nextId;
    }

    /**
     * 再次获取时间戳直到获取的时间戳与现有的不同
     * @param lastTimestamp
     * @return 下一个时间戳
     */
    private long tilNextMillis(final long lastTimestamp) {
        long timestamp = this.timeGen();
        while (timestamp <= lastTimestamp) {
            timestamp = this.timeGen();
        }
        return timestamp;
    }

    private long timeGen() {
        return System.currentTimeMillis();
    }

    /**
     * 获取机器编码
     * @return
     */
    private long getMachineNum(){
        long machinePiece;
        StringBuilder sb = new StringBuilder();
        Enumeration<NetworkInterface> e = null;
        try {
            e = NetworkInterface.getNetworkInterfaces();
        } catch (SocketException e1) {
            e1.printStackTrace();
        }
        while (e.hasMoreElements()) {
            NetworkInterface ni = e.nextElement();
            sb.append(ni.toString());
        }
        machinePiece = sb.toString().hashCode();
        return machinePiece;
    }

    public static void main(String[] args) {
        new SnowFlake().getNextId();
    }
}

参考:https://blog.csdn.net/lq18050010830/article/details/89845790

以上是关于《Java知识应用》Java雪花算法的原理和实现的主要内容,如果未能解决你的问题,请参考以下文章

雪花算法的原理和 Java 实现

雪花算法的原理和 Java 实现

雪花算法到底是啥原理?附 Java 实现!

雪花算法到底是啥原理?附 Java 实现!

Java实现雪花算法(snowflake)-生成永不重复的ID(源代码+工具类)使用案例

Java实现雪花算法(snowflake)-生成永不重复的ID(源代码+工具类)使用案例