图像处理代码合集:特征提取-图像分割-分类-匹配-降噪
Posted Naruto_Q
tags:
篇首语:本文由小常识网(cha138.com)小编为大家整理,主要介绍了图像处理代码合集:特征提取-图像分割-分类-匹配-降噪相关的知识,希望对你有一定的参考价值。
这几天在研究血管增强与分割,发现一个比较全面的图像处理方面的项目集合,里面涵盖了特征提取、图像分割、图像分类、图像匹配、图像降噪,光流法等等方面的项目和代码集合,项目是2012年之前的,但是涵盖比较基础的原理知识,用到的时候可以参考一下:
Topic | Resources | References |
Feature Extraction |
|
|
Image Segmentation |
|
|
Object Detection |
|
|
Saliency Detection |
|
|
Image Classification |
|
|
Category-Independent Object Proposal | ||
MRF |
|
|
Shadow Detection | ||
Optical Flow |
|
|
Object Tracking |
| |
Image Matting | ||
Bilateral Filtering | ||
Image Denoising | ||
Image Super-Resolution | ||
Image Deblurring | ||
Image Quality Assessment |
| |
Density Estimation |
| |
Dimension Reduction | ||
Sparse Coding | ||
Low-Rank Matrix Completion | ||
Nearest Neighbors matching |
| |
Steoreo |
|
|
Structure from motion |
|
|
Distance Transformation |
|
|
Chamfer Matching |
|
|
Clustering |
| |
Classification |
| |
Regression |
| |
Multiple Kernel Learning (MKL) |
| |
Multiple Instance Learning (MIL) |
| |
Other Utilities |
Useful Links (dataset, lectures, and other softwares)
Conference Information | |
Papers | |
Datasets | |
Lectures | |
Source Codes |
一、特征提取Feature Extraction:
-
SIFT [1] [Demo program][SIFT Library] [VLFeat]
-
PCA-SIFT [2] [Project]
-
Affine-SIFT [3] [Project]
-
SURF [4] [OpenSURF] [Matlab Wrapper]
-
Affine Covariant Features [5] [Oxford project]
-
MSER [6] [Oxford project] [VLFeat]
-
Geometric Blur [7] [Code]
-
Local Self-Similarity Descriptor [8] [Oxford implementation]
-
Global and Efficient Self-Similarity [9] [Code]
-
Histogram of Oriented Graidents [10] [INRIA Object Localization Toolkit] [OLT toolkit for Windows]
-
GIST [11] [Project]
-
Shape Context [12] [Project]
-
Color Descriptor [13] [Project]
-
Pyramids of Histograms of Oriented Gradients [Code]
-
Boundary Preserving Dense Local Regions [15][Project]
-
Weighted Histogram[Code]
-
An OpenCV - C++ implementation of Local Self Similarity Descriptors [Project]
-
Fast Sparse Representation with Prototypes[Project]
-
Corner Detection [Project]
-
AGAST Corner Detector: faster than FAST and even FAST-ER[Project]
-
Real-time Facial Feature Detection using Conditional Regression Forests[Project]
-
Global and Efficient Self-Similarity for Object Classification and Detection[code]
-
WαSH: Weighted α-Shapes for Local Feature Detection[Project]
-
HOG[Project]
-
Online Selection of Discriminative Tracking Features[Project]
二、图像分割Image Segmentation:
-
Normalized Cut [1] [Matlab code]
-
Gerg Mori’ Superpixel code [2] [Matlab code]
-
Efficient Graph-based Image Segmentation [3] [C++ code] [Matlab wrapper]
-
Mean-Shift Image Segmentation [4] [EDISON C++ code] [Matlab wrapper]
-
OWT-UCM Hierarchical Segmentation [5] [Resources]
-
Turbepixels [6] [Matlab code 32bit] [Matlab code 64bit] [Updated code]
-
Quick-Shift [7] [VLFeat]
-
SLIC Superpixels [8] [Project]
-
Segmentation by Minimum Code Length [9] [Project]
-
Biased Normalized Cut [10] [Project]
-
Segmentation Tree [11-12] [Project]
-
Entropy Rate Superpixel Segmentation [13] [Code]
-
Fast Approximate Energy Minimization via Graph Cuts[Paper][Code]
-
Efficient Planar Graph Cuts with Applications in Computer Vision[Paper][Code]
-
Isoperimetric Graph Partitioning for Image Segmentation[Paper][Code]
-
Blossom V: A new implementation of a minimum cost perfect matching algorithm[Code]
-
An Experimental Comparison of Min-Cut/Max-Flow Algorithms for Energy Minimization in Computer Vision[Paper][Code]
-
Geodesic Star Convexity for Interactive Image Segmentation[Project]
-
Contour Detection and Image Segmentation Resources[Project][Code]
-
Biased Normalized Cuts[Project]
-
Max-flow/min-cut[Project]
-
Chan-Vese Segmentation using Level Set[Project]
-
A Toolbox of Level Set Methods[Project]
-
Re-initialization Free Level Set Evolution via Reaction Diffusion[Project]
-
A Variational Multiphase Level Set Approach to Simultaneous Segmentation and Bias Correction[Paper][Code]
-
Level Set Method Research by Chunming Li[Project]
-
ClassCut for Unsupervised Class Segmentation[code]
-
SEEDS: Superpixels Extracted via Energy-Driven Sampling [Project][other]
三、目标检测Object Detection:
-
A simple object detector with boosting [Project]
-
INRIA Object Detection and Localization Toolkit [1] [Project]
-
Discriminatively Trained Deformable Part Models [2] [Project]
-
Cascade Object Detection with Deformable Part Models [3] [Project]
-
Poselet [4] [Project]
-
Implicit Shape Model [5] [Project]
-
Viola and Jones’s Face Detection [6] [Project]
-
Bayesian Modelling of Dyanmic Scenes for Object Detection[Paper][Code]
-
Hand detection using multiple proposals[Project]
-
Color Constancy, Intrinsic Images, and Shape Estimation[Paper][Code]
-
Discriminatively trained deformable part models[Project]
-
Gradient Response Maps for Real-Time Detection of Texture-Less Objects: LineMOD [Project]
-
Image Processing On Line[Project]
-
Robust Optical Flow Estimation[Project]
-
Where's Waldo: Matching People in Images of Crowds[Project]
-
Scalable Multi-class Object Detection[Project]
-
Class-Specific Hough Forests for Object Detection[Project]
-
Deformed Lattice Detection In Real-World Images[Project]
-
Discriminatively trained deformable part models[Project]
四、显著性检测Saliency Detection:
-
Itti, Koch, and Niebur’ saliency detection [1] [Matlab code]
-
Frequency-tuned salient region detection [2] [Project]
-
Saliency detection using maximum symmetric surround [3] [Project]
-
Attention via Information Maximization [4] [Matlab code]
-
Context-aware saliency detection [5] [Matlab code]
-
Graph-based visual saliency [6] [Matlab code]
-
Saliency detection: A spectral residual approach. [7] [Matlab code]
-
Segmenting salient objects from images and videos. [8] [Matlab code]
-
Saliency Using Natural statistics. [9] [Matlab code]
-
Discriminant Saliency for Visual Recognition from Cluttered Scenes. [10] [Code]
-
Learning to Predict Where Humans Look [11] [Project]
-
Global Contrast based Salient Region Detection [12] [Project]
-
Bayesian Saliency via Low and Mid Level Cues[Project]
-
Top-Down Visual Saliency via Joint CRF and Dictionary Learning[Paper][Code]
-
Saliency Detection: A Spectral Residual Approach[Code]
五、图像分类、聚类Image Classification, Clustering
-
Pyramid Match [1] [Project]
-
Spatial Pyramid Matching [2] [Code]
-
Locality-constrained Linear Coding [3] [Project] [Matlab code]
-
Sparse Coding [4] [Project] [Matlab code]
-
Texture Classification [5] [Project]
-
Multiple Kernels for Image Classification [6] [Project]
-
Feature Combination [7] [Project]
-
SuperParsing [特征类型和图像分割
100天精通Python丨黑科技篇 —— 06Python 修图(滤镜灰度裁剪视觉处理图像分割特征提取)