Java并发编程:Java线程池核心ThreadPoolExecutor的使用和原理分析

Posted 鄙人薛某

tags:

篇首语:本文由小常识网(cha138.com)小编为大家整理,主要介绍了Java并发编程:Java线程池核心ThreadPoolExecutor的使用和原理分析相关的知识,希望对你有一定的参考价值。

引出线程池

线程是并发编程的基础,前面的文章里,我们的实例基本都是基于线程开发作为实例,并且都是使用的时候就创建一个线程。这种方式比较简单,但是存在一个问题,那就是线程的数量问题。

假设有一个系统比较复杂,需要的线程数很多,如果都是采用这种方式来创建线程的话,那么就会极大的消耗系统资源。首先是因为线程本身的创建和销毁需要时间,如果每个小任务都创建一个线程,那么就会大大降低系统的效率。其次是线程本身也是占用内存空间的,大量的线程运行会抢占内存资源,处理不当很可能会内存溢出,这显然不是我们想看到的。

那么有什么办法解决呢?有一个好的思路就是对线程进行复用,因为所有的线程并不都是同一时间一起运行的,有些线程在某个时刻可能是空闲状态,如果这部分空闲线程能有效利用起来,那么就能让线程的运行被充分的利用,这样就不需要创建那么多的线程了。我们可以把特定数量的线程放在一个容器里,需要使用线程时,从容器里拿出空闲线程使用,线程工作完后不急着关闭,而是退回到线程池等待使用。这样的容器一般被称为线程池。用线程池来管理线程是非常有效的方法,用一张图片可以简单的展示出线程池的管理流程:

Executor框架

Java中也有一套框架来控制管理线程,那就是Executor框架。Executor框架是JDK1.5之后才引入的,位于java.util.cocurrent 包下,可以通过该框架来控制线程的启动、执行和关闭,从而简化并发编程的操作,这是它的核心成员类图:

Executor:最上层的接口,定义了一个基本方法execute,接受一个Runnable参数,用来替代通常创建或启动线程的方法。

ExecutorService:继承自Executor接口,提供了处理多线程的方法。

ScheduledExecutorService:定时调度接口,继承自ExecutorService。

AbstractExecutorService:执行框架的抽象类。

ThreadPoolExecutor:线程池中最核心的一个类,提供了线程池操作的基本方法。

Executors:线程池工厂类,可用于创建一系列有特定功能的线程池。

ThreadPoolExecutor详解

以上Executor框架中的基本成员,其中最核心的的成员无疑就是ThreadPoolExecutor,想了解Java中线程池的运行机制,就必须先了解这个类,而最好的了解方式无疑就是看源码。

构造函数

打开ThreadPoolExecutor的源码,发现类中提供了四个构造方法

public ThreadPoolExecutor(int corePoolSize,
                          int maximumPoolSize,
                          long keepAliveTime,
                          TimeUnit unit,
                          BlockingQueue<Runnable> workQueue) {
    this(corePoolSize, maximumPoolSize, keepAliveTime, unit, workQueue,
         Executors.defaultThreadFactory(), defaultHandler);
}
public ThreadPoolExecutor(int corePoolSize,
                              int maximumPoolSize,
                              long keepAliveTime,
                              TimeUnit unit,
                              BlockingQueue<Runnable> workQueue,
                              ThreadFactory threadFactory) {
        this(corePoolSize, maximumPoolSize, keepAliveTime, unit, workQueue,
             threadFactory, defaultHandler);
}
public ThreadPoolExecutor(int corePoolSize,
                            int maximumPoolSize,
                            long keepAliveTime,
                            TimeUnit unit,
                            BlockingQueue<Runnable> workQueue,
                            RejectedExecutionHandler handler) {
        this(corePoolSize, maximumPoolSize, keepAliveTime, unit, workQueue,
        	Executors.defaultThreadFactory(), handler);
}
public ThreadPoolExecutor(int corePoolSize,
                              int maximumPoolSize,
                              long keepAliveTime,
                              TimeUnit unit,
                              BlockingQueue<Runnable> workQueue,
                              ThreadFactory threadFactory,
                              RejectedExecutionHandler handler) {
        if (corePoolSize < 0 ||
            maximumPoolSize <= 0 ||
            maximumPoolSize < corePoolSize ||
            keepAliveTime < 0)
            throw new IllegalArgumentException();
        if (workQueue == null || threadFactory == null || handler == null)
            throw new NullPointerException();
        this.corePoolSize = corePoolSize;
        this.maximumPoolSize = maximumPoolSize;
        this.workQueue = workQueue;
        this.keepAliveTime = unit.toNanos(keepAliveTime);
        this.threadFactory = threadFactory;
        this.handler = handler;
    }

可以看出,ThreadPoolExecutor的构造函数中的参数还是比较多的,并且最核心的是第四个构造函数,其中完成了底层的初始化工作。

下面解释一下构造函数参数的含义:

  • corePoolSize:线程池的基本大小。当提交一个任务到线程池后,线程池会创建一个线程执行任务,重复这种操作,直到线程池中的数目达到corePoolSize后不再创建新线程,而是把任务放到缓存队列中。

  • maximumPoolSize:线程池允许创建的最大线程数。

  • workQueue:阻塞队列,用于存储等待执行的任务,并且只能存储调用execute 方法提交的任务。常用的有三种队列,SynchronousQueue,LinkedBlockingDeque,ArrayBlockingQueue。

  • keepAliveTime:线程池中线程的最大空闲时间,这种情况一般是线程数目大于任务的数量导致。

  • unit:keepAliveTime的时间单位,TimeUnit是一个枚举类型,位于java.util.concurrent包下。

  • threadFactory:线程工厂,用于创建线程。

  • handler:拒绝策略,当任务太多来不及处理时所采用的处理策略。

重要的变量

看完了构造函数,我们来看下ThreadPoolExecutor类中几个重要的成员变量:

private final AtomicInteger ctl = new AtomicInteger(ctlOf(RUNNING, 0));
private static final int COUNT_BITS = Integer.SIZE - 3;
private static final int CAPACITY   = (1 << COUNT_BITS) - 1;

// runState is stored in the high-order bits
private static final int RUNNING    = -1 << COUNT_BITS;
private static final int SHUTDOWN   =  0 << COUNT_BITS;
private static final int STOP       =  1 << COUNT_BITS;
private static final int TIDYING    =  2 << COUNT_BITS;
private static final int TERMINATED =  3 << COUNT_BITS;

// Packing and unpacking ctl
private static int runStateOf(int c)     { return c & ~CAPACITY; }
private static int workerCountOf(int c)  { return c & CAPACITY; }
private static int ctlOf(int rs, int wc) { return rs | wc; }

ctl:控制线程运行状态的一个字段。同时,根据下面的几个方法runStateOfworkerCountOfctlOf可以看出,该字段还包含了两部分的信息:线程池的运行状态 (runState) 和线程池内有效线程的数量 (workerCount),并且使用的是Integar类型,高3位保存runState,低29位保存workerCount。

COUNT_BITS:值为29的常量,在字段CAPACITY被引用计算。

CAPACITY:表示有效线程数量(workerCount)的上限,大小为 (1<<29) - 1。

下面5个变量表示的是线程的运行状态,分别是:

  • RUNNING :接受新提交的任务,并且能处理阻塞队列中的任务;
  • SHUTDOWN:不接受新的任务,但会执行队列中的任务。
  • STOP:不接受新任务,也不处理队列中的任务,同时中断正在处理任务的线程。
  • TIDYING:如果所有的任务都已终止了,workerCount (有效线程数) 为0,线程池进入该状态后会调用 terminated() 方法进入TERMINATED 状态。
  • TERMINATED:terminated( ) 方法执行完毕。

用一个状态转换图表示大概如下 (图片来源于https://www.cnblogs.com/liuzhihu/p/8177371.html):

构造函数和基本参数都了解后,接下来就是对类中重要方法的研究了。

线程池执行流程

execute方法

ThreadPoolExecutor类的核心调度方法是execute(),通过调用这个方法可以向线程池提交一个任务,交由线程池去执行。而ThreadPoolExecutor的工作逻辑也可以藉由这个方法来一步步理清。这是方法的源码:

public void execute(Runnable command) {
    if (command == null)
        throw new NullPointerException();
    //获取ctl的值,前面说了,该值记录着runState和workerCount
    int c = ctl.get();
    /*
     * 调用workerCountOf得到当前活动的线程数;
     * 当前活动线程数小于corePoolSize,新建一个线程放入线程池中;
     * addWorker(): 把任务添加到该线程中。
     */
    if (workerCountOf(c) < corePoolSize) {
        if (addWorker(command, true))
            return;
        //如果上面的添加线程操作失败,重新获取ctl值
        c = ctl.get();
    }
    //如果当前线程池是运行状态,并且往工作队列中添加该任务
    if (isRunning(c) && workQueue.offer(command)) {
        int recheck = ctl.get();
        /*
         * 如果当前线程不是运行状态,把任务从队列中移除
         * 调用reject(内部调用handler)拒绝接受任务	
         */
        if (! isRunning(recheck) && remove(command))
            reject(command);
        //获取线程池中的有效线程数,如果为0,则执行addWorker创建一个新线程
        else if (workerCountOf(recheck) == 0)
            addWorker(null, false);
    }
    /*
     * 如果执行到这里,有两种情况:
     * 1. 线程池已经不是RUNNING状态;
     * 2. 线程池是RUNNING状态,但workerCount >= corePoolSize并且workQueue已满。
     * 这时,再次调用addWorker方法,但第二个参数传入为false,将线程池的有限线程数量的上限设置为maximumPoolSize;
     * 如果失败则拒绝该任务
     */
    else if (!addWorker(command, false))
        reject(command);
}

简单概括一下代码的逻辑,大概是这样:

1、判断当前运行中的线程数是否小于corePoolSize,是的话则调用addWorker创建线程执行任务。

2、不满足1的条件,就把任务放入工作队列workQueue中。

3、如果任务成功加入workQueue,判断线程池是否是运行状态,不是的话先把任务移出工作队列,并调用reject方法,使用拒绝策略拒绝该任务。线程如果是非运行中,调用addWorker创建一个新线程。

4、如果放入workQueue失败 (队列已满),则调用addWorker创建线程执行任务,如果这时创建线程失败 (addWorker传进去的第二个参数值是false,说明这种情况是当前线程数不小于maximumPoolSize),就会调用reject(内部调用handler)拒绝接受任务。

整个执行流程用一张图片表示大致如下:

以上就是execute方法的大概逻辑,接下来看看addWorker的方法实现。

addWorker方法

源码如下:

private boolean addWorker(Runnable firstTask, boolean core) {
    retry:
    for (;;) {
        int c = ctl.get();
        int rs = runStateOf(c);

        /**线程池状态不为SHUTDOWN时
        * 判断队列或者任务是否为空,是的话返回false
        */.
        if (rs >= SHUTDOWN &&
            ! (rs == SHUTDOWN &&
               firstTask == null &&
               ! workQueue.isEmpty()))
            return false;

        for (;;) {
            int wc = workerCountOf(c);
            /*	这里可以看出core参数决定着活动线程数的大小比较对象
            *   core为true表示与 corePoolSize大小进行比较
            *   core为false表示与 maximumPoolSize大小进行比较
          	*   当前活动线程数大于比较对象就返回false
            */
            if (wc >= CAPACITY ||
                wc >= (core ? corePoolSize : maximumPoolSize))
                return false;
            // 尝试增加workerCount,如果成功,则跳出第一个for循环
            if (compareAndIncrementWorkerCount(c))
                break retry;
            // 如果增加workerCount失败,则重新获取ctl的值
            c = ctl.get();  // Re-read ctl
            // 如果当前的运行状态不等于rs,说明状态已被改变,返回第一个for循环继续执行
            if (runStateOf(c) != rs)
                continue retry;
            // else CAS failed due to workerCount change; retry inner loop
        }
    }

    boolean workerStarted = false;
    boolean workerAdded = false;
    Worker w = null;
    try {
    	//创建一个worker对象w
        w = new Worker(firstTask);
        //实例化w的线程t
        final Thread t = w.thread;
        if (t != null) {
            final ReentrantLock mainLock = this.mainLock;
            mainLock.lock();
            try {
                // Recheck while holding lock.
                // Back out on ThreadFactory failure or if
                // shut down before lock acquired.
                int rs = runStateOf(ctl.get());

                if (rs < SHUTDOWN ||
                    (rs == SHUTDOWN && firstTask == null)) {
                    if (t.isAlive()) // precheck that t is startable
                        throw new IllegalThreadStateException();
                    // workers是一个HashSet,保存着任务的worker对象
                    workers.add(w);
                    int s = workers.size();
                    if (s > largestPoolSize)
                        largestPoolSize = s;
                    workerAdded = true;
                }
            } finally {
                mainLock.unlock();
            }
            if (workerAdded) {
            	//启动线程
                t.start();
                workerStarted = true;
            }
        }
    } finally {
        if (! workerStarted)
            addWorkerFailed(w);
    }
    return workerStarted;
}

从代码中可以看出,addWorker方法的主要工作是在线程池中创建一个新的线程并执行,其中firstTask参数指定的是新线程需要执行的第一个任务,core参数决定于活动线程数的比较对象是corePoolSize还是maximumPoolSize。根据传进来的参数首先对线程池和队列的状态进行判断,满足条件就新建一个Worker对象,并实例化该对象的线程,最后启动线程。

Worker类

根据addWorker源码中的逻辑,我们可以发现,线程池中的每一个线程其实都是对应的Worker对象在维护的,所以我们有必要对Worker类一探究竟,先看一下类的源码:

private final class Worker
    extends AbstractQueuedSynchronizer
    implements Runnable
{
    /**
     * This class will never be serialized, but we provide a
     * serialVersionUID to suppress a javac warning.
     */
    private static final long serialVersionUID = 6138294804551838833L;

    /** Thread this worker is running in.  Null if factory fails. */
    final Thread thread;
    /** Initial task to run.  Possibly null. */
    Runnable firstTask;
    /** Per-thread task counter */
    volatile long completedTasks;

    /**
     * Creates with given first task and thread from ThreadFactory.
     * @param firstTask the first task (null if none)
     */
    Worker(Runnable firstTask) {
        setState(-1); // inhibit interrupts until runWorker
        this.firstTask = firstTask;
        this.thread = getThreadFactory().newThread(this);
    }

    /** Delegates main run loop to outer runWorker  */
    public void run() {
        runWorker(this);
    }

    // Lock methods
    //
    // The value 0 represents the unlocked state.
    // The value 1 represents the locked state.

    protected boolean isHeldExclusively() {
        return getState() != 0;
    }

    protected boolean tryAcquire(int unused) {
        if (compareAndSetState(0, 1)) {
            setExclusiveOwnerThread(Thread.currentThread());
            return true;
        }
        return false;
    }

    protected boolean tryRelease(int unused) {
        setExclusiveOwnerThread(null);
        setState(0);
        return true;
    }

    public void lock()        { acquire(1); }
    public boolean tryLock()  { return tryAcquire(1); }
    public void unlock()      { release(1); }
    public boolean isLocked() { return isHeldExclusively(); }

    void interruptIfStarted() {
        Thread t;
        if (getState() >= 0 && (t = thread) != null && !t.isInterrupted()) {
            try {
                t.interrupt();
            } catch (SecurityException ignore) {
            }
        }
    }
}

从Worker类的构造函数可以看出,当实例化一个Worker对象时,Worker对象会把传进来的Runnable参数firstTask赋值给自己的同名属性,并且用线程工厂也就是当前的ThreadFactory来新建一个线程。

同时,因为Worker实现了Runnable接口,所以当Worker类中的线程启动时,调用的其实是run()方法。run方法中调用的是runWorker方法,我们来看下它的具体实现:

final void runWorker(Worker w) {
    Thread wt = Thread.currentThread();
    //获取第一个任务
    Runnable task = w.firstTask;
    w.firstTask = null;
    //允许中断
    w.unlock(); // allow interrupts
    //是否因为异常退出循环的标志,processWorkerExit方法会对该参数做判断
    boolean completedAbruptly = true;
    try {
    	//判断task是否为null,是的话通过getTask()从队列中获取任务
        while (task != null || (task = getTask()) != null) {
            w.lock();
            // If pool is stopping, ensure thread is interrupted;
            // if not, ensure thread is not interrupted.  This
            // requires a recheck in second case to deal with
            // shutdownNow race while clearing interrupt
            /* 这里的判断主要逻辑是这样:
             * 如果线程池正在停止,那么就确保当前线程是中断状态;
             * 如果不是的话,就要保证不是中断状态
             */
            if ((runStateAtLeast(ctl.get(), STOP) ||
                 (Thread.interrupted() &&
                  runStateAtLeast(ctl.get(), STOP))) &&
                !wt.isInterrupted())
                wt.interrupt();
            try {
                //用于记录任务执行前需要做哪些事,属于ThreadPoolExecutor类中的方法,				//是空的,需要子类具体实现
                beforeExecute(wt, task);
                Throwable thrown = null;
                try {
                	//执行任务
                    task.run();
                } catch (RuntimeException x) {
                    thrown = x; throw x;
                } catch (Error x) {
                    thrown = x; throw x;
                } catch (Throwable x) {
                    thrown = x; throw new Error(x);
                } finally {
                    afterExecute(task, thrown);
                }
            } finally {
                task = null;
                w.completedTasks++;
                w.unlock();
            }
        }
        completedAbruptly = false;
    } finally {    	
        processWorkerExit(w, completedAbruptly);
    }
}

总结一下runWorker方法的运行逻辑:

1、通过while循环不断地通过getTask()方法从队列中获取任务;

2、如果线程池正在停止状态,确保当前的线程是中断状态,否则确保当前线程不中断;

3、调用task的run()方法执行任务,执行完毕后需要置为null;

4、循环调用getTask()取不到任务了,跳出循环,执行processWorkerExit()方法。

过完runWorker()的运行流程,我们来看下getTask()是怎么实现的。

getTask方法

getTask()方法的作用是从队列中获取任务,下面是该方法的源码:

private Runnable getTask() {
	//记录上次从队列获取任务是否超时
    boolean timedOut = false; // Did the last poll() time out?

    for (;;) {
        int c = ctl.get();
        int rs = runStateOf(c);

        // Check if queue empty only if necessary.
        if (rs >= SHUTDOWN && (rs >= STOP || workQueue.isEmpty())) {
        	//将workerCount减1
            decrementWorkerCount();
            return null;
        }

        int wc = workerCountOf(c);

        // Are workers subject to culling?
        /*	timed变量用于判断线程的操作是否需要进行超时判断
         *	allowCoreThreadTimeOut不管它,默认是false
         *  wc > corePoolSize,当前线程是如果大于核心线程数corePoolSize
         */
        boolean timed = allowCoreThreadTimeOut || wc > corePoolSize;
		
        if ((wc > maximumPoolSize || (timed && timedOut))
            && (wc > 1 || workQueue.isEmpty())) {
            if (compareAndDecrementWorkerCount(c))
                return null;
            continue;
        }

        try {
        	/* 根据timed变量判断,如果为true,调用workQueue的poll方法获取任务,
        	 * 如果在keepAliveTime时间内没有获取到任务,则返回null;
        	 * timed为false的话,就调用workQueue的take方法阻塞队列,        	 
        	 * 直到队列中有任务可取。
        	 */
            Runnable r = timed ?
                workQueue.poll(keepAliveTime, TimeUnit.NANOSECONDS) :
                workQueue.take();
            if (r != null)
                return r;
            //r为null,说明time为true,超时了,把timedOut也设置为true
            timedOut = true;
        } catch (InterruptedException retry) {
        	//发生异常,把timedOut也设置为false,重新跑循环
            timedOut = false;
        }
    }
}

getTask的代码看上去比较简单,但其实内有乾坤,我们来重点分析一下两个if判断的逻辑:

1、当进入getTask方法后,先判断当前线程池状态,如果线程池状态rs >= SHUTDOWN,再进行以下判断:

1)rs 的状态是否大于STOP;2)队列是否为空;

满足以上条件其中之一,就将workerCount减1并返回null,也就是表示队列中不再有任务。因为线程池的状态值是SHUTDOWN以上时,队列中不再允许添加新任务,所以上面两个条件满足一个都说明队列中的任务都取完了。

2、进入第二个if判断,这里的逻辑有点绕,但作用比较重要,是为了控制线程池的有效线程数量,我们来具体解析下代码:

wc > maximumPoolSize:判断当前线程数是否大于maximumPoolSize,这种情况一般很少发生,除非是maximumPoolSize的大小在该程序执行的同时被进行设置,比如调用ThreadPoolExecutor中的setMaximumPoolSize方法。

timed && timedOut:如果为true,表示当前的操作需要进行超时判断,并且上次从队列获取任务已经超时。

wc > 1 || workQueue.isEmpty():如果工作线程大于1,或者阻塞队列是空的。

compareAndDecrementWorkerCount:比较并将线程池中的workerCount减1

在上文中,我们解析execute方法的逻辑时了解到,如果当前线程池的线程数量超过了corePoolSize且小于maximumPoolSize,并且workQueue已满时,仍然可以增加工作线程。

但调用getTask()取任务的过程中,如果超时没有获取到任务,也就是timedOut为true的情况,说明workQueue已经为空了,也就说明了当前线程池中不需要那么多线程来执行任务了,可以把多于corePoolSize数量的线程销毁掉,也就是不断的让任务被取出,让线程数量保持在corePoolSize即可,直到getTask方法返回null。

而当getTask方法返回null后,runWorker方法中就会因为取不到任务而执行processWorkerExit()方法。

processWorkerExit方法

processWorkerExit方法的作用主要是对worker对象的移除,下面是方法的源码:

private void processWorkerExit(Worker w, boolean completedAbruptly) {
	//是异常退出的话,执行程序将workerCount数量减1
    if (completedAbruptly) // If abrupt, then workerCount wasn\'t adjusted
        decrementWorkerCount();

    final ReentrantLock mainLock = this.mainLock;
    mainLock.lock();
    try {
        completedTaskCount += w.completedTasks;
        // 从workers的集合中移除worker对象,也就表示着从线程池中移除了一个工作线程
        workers.remove(w);
    } finally {
        mainLock.unlock();
    }

    tryTerminate();

    int c = ctl.get();
    if (runStateLessThan(c, STOP)) {
        if (!completedAbruptly) {
            int min = allowCoreThreadTimeOut ? 0 : corePoolSize;
            if (min == 0 && ! workQueue.isEmpty())
                min = 1;
            if (workerCountOf(c) >= min)
                return; // replacement not needed
        }
        addWorker(null, false);
    }
}

至此,从executor方法开始的整个运行过程就完毕了,总结一下该流程:

执行executor --> 新建Worker对象,并实例化线程 --> 调用runWorker方法,通过getTask()获取任务,并执行run方法 --> getTask()方法中不断向队列取任务,并将workerCount数量减1,直至返回null --> 调用processWorkerExit清除worker对象。

用一张流程图表示如下所示 (图片来源于https://www.cnblogs.com/liuzhihu/p/8177371.html):

任务队列workQueue

前面我们多次提到了workQueue,这是一个任务队列,用来存放等待执行的任务,它是BlockingQueue类型的对象,而在ThreadPoolExecutor的源码注释中,详细介绍了三种常用的Queue类型,分别是:

  • SynchronousQueue:直接提交的队列。这个队列没有容量,当接收到任务的时候,会直接提交给线程处理,而不保留它。如果没有空闲的线程,就新建一个线程来处理这个任务!如果线程数量达到最大值,就会执行拒绝策略。所以,使用这个类型队列的时候,一般都是将maximumPoolSize一般指定成Integer.MAX_VALUE,避免容易被拒绝。

  • ArrayBlockingQueue:有界的任务队列。需要给定一个参数来限制队列的长度,接收到任务的时候,如果没有达到corePoolSize的值,则新建线程 (核心线程) 执行任务,如果达到了,则将任务放入等待队列。如果队列已满,则在总线程数不到maximumPoolSize的前提下新建线程执行任务,若大于maximumPoolSize,则执行拒绝策略。

  • LinkedBlockingQueue:无界的任务队列。该队列没有任务数量的限制,所以任务可以一直入队,知道耗尽系统资源。当接收任务,如果当前线程数小于corePoolSize,则新建线程处理任务;如果当前线程数等于corePoolSize,则进入队列等待。

任务拒绝策略

当线程池的任务队列已满并且线程数目达到maximumPoolSize时,对于新加的任务一般会采取拒绝策略,通常有以下四种策略:

  1. AbortPolicy:直接抛出异常,这是默认策略;
  2. CallerRunsPolicy:用调用者所在的线程来执行任务;
  3. DiscardOldestPolicy:丢弃阻塞队列中靠最前的任务,并执行当前任务;
  4. DiscardPolicy:直接丢弃任务;

线程池的关闭

ThreadPoolExecutor提供了两个方法,用于线程池的关闭,分别是shutdown()和shutdownNow():

public void shutdown() {
    final ReentrantLock mainLock = this.mainLock;
    mainLock.lock();
    try {
        checkShutdownAccess();
        advanceRunState(SHUTDOWN);
        interruptIdleWorkers();
        onShutdown(); // hook for ScheduledThreadPoolExecutor
    } finally {
        mainLock.unlock();
    }
    tryTerminate();
}
public List<Runnable> shutdownNow() {
        List<Runnable> tasks;
        final ReentrantLock mainLock = this.mainLock;
        mainLock.lock();
        try {
            checkShutdownAccess();
            advanceRunState(STOP);
            interruptWorkers();
            tasks = drainQueue();
        } finally {
            mainLock.unlock();
        }
        tryTerminate();
        return tasks;
    }

代码逻辑就不一一进行解析了,总结一下两个方法的特点就是:

  • shutdown():不会立即终止线程池,而是要等所有任务缓存队列中的任务都执行完后才终止,但再也不会接受新的任务
  • shutdownNow():立即终止线程池,并尝试打断正在执行的任务,并且清空任务缓存队列,返回尚未执行的任务

ThreadPoolExecutor创建线程池实例

ThreadPoolExecutor的运行机制讲完了,接下来展示一下如何用ThreadPoolExecutor创建线程池实例,具体代码如下:

public static void main(String[] args) {
    ExecutorService service = new ThreadPoolExecutor(5, 10, 300, TimeUnit.MILLISECONDS,
            new ArrayBlockingQueue<Runnable>(5));
    //用lambda表达式编写方法体中的逻辑
    Runnable run = () -> {
        try {
            Thread.sleep(1000);
            System.out.println(Thread.currentThread().getName() + "正在执行");
        } catch (InterruptedException e) {
            e.printStackTrace();
        }
    };
    for (int i = 0; i < 10; i++) {
        service.execute(run);
    }
    //这里一定要做关闭
    service.shutdown();
}

上面的代码中,我们创建的ThreadPoolExecutor线程池的核心线程数为5个,所以,当调用线程池执行任务时,同时运行的线程最多也是5个,执行main方法,输出结果如下:

pool-1-thread-3正在执行
pool-1-thread-1正在执行
pool-1-thread-4正在执行
pool-1-thread-5正在执行
pool-1-thread-3正在执行
pool-1-thread-2正在执行
pool-1-thread-1正在执行
pool-1-thread-4正在执行
pool-1-thread-5正在执行

看到出来,线程池确实只有5个线程在工作,也就是真正的实现了线程的复用,说明我们的ThreadPoolExecutor实例是有效的。

参考:

https://www.cnblogs.com/liuzhihu/p/8177371.html

https://www.cnblogs.com/dolphin0520/p/3932921.html

《实战Java:高并发程序设计》

以上是关于Java并发编程:Java线程池核心ThreadPoolExecutor的使用和原理分析的主要内容,如果未能解决你的问题,请参考以下文章

Java并发基础 - 线程池

并发编程系列:Java线程池的使用方式,核心运行原理以及注意事项

Java 并发编程线程池机制 ( 线程池执行任务细节分析 | 线程池执行 execute 源码分析 | 先创建核心线程 | 再放入阻塞队列 | 最后创建非核心线程 )

java之并发编程线程池的学习

Java并发编程——线程池

java并发编程--线程池的使用