Java练习 SDUT-2728_最佳拟合直线
Posted 洛沐辰
tags:
篇首语:本文由小常识网(cha138.com)小编为大家整理,主要介绍了Java练习 SDUT-2728_最佳拟合直线相关的知识,希望对你有一定的参考价值。
最佳拟合直线
Time Limit: 1000 ms Memory Limit: 65536 KiB
Problem Description
在很多情况下,天文观测得到的数据是一组包含很大数量的序列点图象,每一点用x值和y值定义。这就可能需要画一条通过这些点的最佳拟合曲线。
为了避免只对个别数据分析,需要进行最佳曲线拟合。考虑N个数据点,它们的坐标是(X1,Y1),(X2,Y2)...,(XN,YN)。假设这些值中的X是严格的精确值,Y的值是测量值(含有一些误差)。
对于一个给定的X,如X1,对应的值Y1与曲线C上对应的Y值将存在一个差值。我们用D1表示这个差值,有时我们也称这个差值为偏差、误差或残差,它可能是正、负或零。类似的,X2...,XN,对应的差值为D2,....,DN。
我们用D12 + D22 + ... + DN2 作为衡量曲线C拟合的“最佳”程度,这个值越小越好,越大则越不好。因此,我们做以下定义:任何一种类型的曲线,它们都有一个共同的特性,当ΣDi2最小时,称为最佳拟合曲线。注:∑指“取和”计算。 一条曲线具有这一特性时,称之为“最小二乘拟合”,这样的曲线称为“最小二乘曲线”。
本次的计算任务是拟合为一条直线,数学上称之为“线性回归”。“回归”一词看起来有点陌生,因为计算最佳曲线没什么好“回归”的,最好的术语就是“曲线似合”,在直线情况下就是“线性曲线拟合”。
你的任务是编写程序用最小二乘法计算出以下线性方程的系数(斜率a以及y轴的截距b):
y = a*x + b (4.1)
a和b可以使用以下公式计算:
式中N是数据点的个数。注意,以上两式具有相同的分母,∑指逐项加法计算(取和)。∑x指对所有的x值求和,∑y指对所以的y值求和,∑(x^2)指对所有x的平方求和。∑xy指对所有的积xy进行取和计算。应注意,∑xy 与 ∑x*∑y是不相同的(“积的和”与“和的积”是不同的),同样(∑x)^2与∑(x^2)也是不相同的(“和的平方”与“平方的和”是不相同的)。
Input
n组整数表示xi,yi ,期中|x|<=106,|y|<=106, n < 15
Output
最佳拟合曲线参数a和b,a和b各占一行,a 和b精确到小数点后3位。
Sample Input
4
1 6
2 5
3 7
4 10
Sample Output
1.400
3.500
import java.util.Scanner;
public class Main {
public static void main(String[] args) {
Scanner cin = new Scanner(System.in);
double x,xx,yy,y,xy,q,w;
int i,n;
double []a = new double[20];
double []b = new double[20];
n = cin.nextInt();
for(i=0;i<n;i++)
{
a[i] = cin.nextDouble();
b[i] = cin.nextDouble();
}
x = get_sum(a,n);
y = get_sum(b,n);
xy = get_sum(a,b,n);
xx = get_sum(a,a,n);
yy = get_sum(b,b,n);
q = (n * xy - x * y) / (n * xx - x*x);
w = (y * xx - x * xy) / (n * xx - x*x);
System.out.printf("%.3f
%.3f
",q,w);
cin.close();
}
static double get_sum(double []x,double []y,int n)
{
double sum = 0;
int i;
for(i=0;i<n;i++)
sum += x[i] * y[i];
return sum;
}
static double get_sum(double []x,int n)
{
double sum = 0;
int i;
for(i=0;i<n;i++)
sum += x[i];
return sum;
}
}
以上是关于Java练习 SDUT-2728_最佳拟合直线的主要内容,如果未能解决你的问题,请参考以下文章