沉淀再出发:关于java中的AQS理解

Posted 精心出精品

tags:

篇首语:本文由小常识网(cha138.com)小编为大家整理,主要介绍了沉淀再出发:关于java中的AQS理解相关的知识,希望对你有一定的参考价值。

沉淀再出发:关于java中的AQS理解

一、前言

    在java中有很多锁结构都继承自AQS(AbstractQueuedSynchronizer)这个抽象类如果我们仔细了解可以发现AQS的作用是非常大的,但是AQS的底层其实也是使用了大量的CAS,因此我们可以看到CAS的重要性了,但是CAS也是有缺陷的,但是在大部分使用的情况下,我们往往忽略了这种缺陷。

二、AQS的认识

  2.1、AQS的基本概念

    AQS(AbstractQueuedSynchronizer)就是抽象的队列式的同步器,AQS定义了一套多线程访问共享资源的同步器框架,许多同步类实现都依赖于它,AQS是一个Java提供的底层同步工具类,用一个int类型的变量表示同步状态,并提供了一系列的CAS操作来管理这个同步状态。AQS的主要作用是为Java中的并发同步组件提供统一的底层支持,如常用的ReentrantLock/Semaphore/CountDownLatch等等就是基于AQS实现的,用法是通过继承AQS实现其模版方法,然后将子类作为同步组件的内部类。

    同步队列是AQS很重要的组成部分,它是一个双端队列,遵循FIFO原则,主要作用是用来存放在锁上阻塞的线程,当一个线程尝试获取锁时,如果已经被占用,那么当前线程就会被构造成一个Node节点加入到同步队列的尾部,队列的头节点是成功获取锁的节点,当头节点线程释放锁时,会唤醒后面的节点并释放当前头节点的引用。

       它维护了一个volatile int state(代表共享资源)和一个FIFO线程等待队列(多线程争用资源被阻塞时会进入此队列)。state的访问方式有三种:

1     getState()
2     setState()
3     compareAndSetState()

     AQS定义两种资源共享方式:Exclusive(独占,只有一个线程能执行,如ReentrantLock)和Share(共享,多个线程可同时执行,如Semaphore/CountDownLatch)。
    不同的自定义同步器争用共享资源的方式也不同。自定义同步器在实现时只需要实现共享资源state的获取与释放方式即可,至于具体线程等待队列的维护(如获取资源失败入队/唤醒出队等),AQS已经在顶层实现好了。自定义同步器实现时主要实现以下几种方法:

1     isHeldExclusively():该线程是否正在独占资源。只有用到condition才需要去实现它。
2     tryAcquire(int):独占方式。尝试获取资源,成功则返回true,失败则返回false。
3     tryRelease(int):独占方式。尝试释放资源,成功则返回true,失败则返回false。
4     tryAcquireShared(int):共享方式。尝试获取资源。负数表示失败;0表示成功,但没有剩余可用资源;正数表示成功,且有剩余资源。
5     tryReleaseShared(int):共享方式。尝试释放资源,如果释放后允许唤醒后续等待结点返回true,否则返回false

  ReentrantLock:state初始化为0,表示未锁定状态。A线程lock()时,会调用tryAcquire()独占该锁并将state+1。此后,其他线程再tryAcquire()时就会失败,直到A线程unlock()到state=0(即释放锁)为止,其它线程才有机会获取该锁。当然,释放锁之前,A线程自己是可以重复获取此锁的(state会累加),这就是可重入的概念。但要注意,获取多少次就要释放多么次,这样才能保证state是能回到零态的。
  CountDownLatch:任务分为N个子线程去执行,state也初始化为N(注意N要与线程个数一致)。这N个子线程是并行执行的,每个子线程执行完后countDown()一次,state会CAS减1。等到所有子线程都执行完后(即state=0),会unpark()主调用线程,然后主调用线程就会从await()函数返回,继续后余动作。
  一般来说,自定义同步器要么是独占方法,要么是共享方式,他们也只需实现tryAcquire-tryRelease、tryAcquireShared-tryReleaseShared中的一种即可。但AQS也支持自定义同步器同时实现独占和共享两种方式,如ReentrantReadWriteLock。

2.1.1、acquire(int)

  此方法是独占模式下线程获取共享资源的顶层入口。如果获取到资源,线程直接返回,否则进入等待队列,直到获取到资源为止,且整个过程忽略中断的影响。这也正是lock()的语义,当然不仅仅只限于lock()。获取到资源后,线程就可以去执行其临界区代码了。下面是acquire()的源码:

1 public final void acquire(int arg) {
2      if (!tryAcquire(arg) &&
3          acquireQueued(addWaiter(Node.EXCLUSIVE), arg))
4          selfInterrupt();
5 }
tryAcquire()尝试直接去获取资源,如果成功则直接返回;
addWaiter()将该线程加入等待队列的尾部,并标记为独占模式;
acquireQueued()使线程在等待队列中获取资源,一直获取到资源后才返回。如果在整个等待过程中被中断过,则返回true,否则返回false。
如果线程在等待过程中被中断过,它是不响应的。只是获取资源后才再进行自我中断selfInterrupt(),将中断补上。

tryAcquire(int)

  此方法尝试去获取独占资源。如果获取成功,则直接返回true,否则直接返回false。如下是tryAcquire()的源码:

protected boolean tryAcquire(int arg) {
     throw new UnsupportedOperationException();
}

   AQS只是一个框架,具体资源的获取/释放方式交由自定义同步器去实现,AQS这里只定义了一个接口,具体资源的获取交由自定义同步器去实现(通过state的get/set/CAS)。至于能不能重入,能不能阻塞,那就看具体的自定义同步器怎么去设计了,当然,自定义同步器在进行资源访问时要考虑线程安全的影响。这里没有定义成abstract是因为独占模式下只用实现tryAcquire-tryRelease,而共享模式下只用实现tryAcquireShared-tryReleaseShared。如果都定义成abstract,那么每个模式也要去实现另一模式下的接口,这样设计可以尽量减少不必要的工作量

 addWaiter(Node)

  此方法用于将当前线程加入到等待队列的队尾,并返回当前线程所在的结点。

private Node addWaiter(Node mode) {
     //以给定模式构造结点。mode有两种:EXCLUSIVE(独占)和SHARED(共享)
    Node node = new Node(Thread.currentThread(), mode);
     //尝试快速方式直接放到队尾。
     Node pred = tail;
     if (pred != null) {
         node.prev = pred;
         if (compareAndSetTail(pred, node)) {
             pred.next = node;
             return node;
         }
     }
     //上一步失败或者初次加入,则采用终极自旋方式保证一定加入队尾
    enq(node);
    return node;
 }

    Node结点是对每一个访问同步代码的线程的封装,其包含了需要同步的线程本身以及线程的状态,如是否被阻塞,是否等待唤醒,是否已经被取消等。变量waitStatus则表示当前被封装成Node结点的等待状态,共有4种取值CANCELLED、SIGNAL、CONDITION、PROPAGATE。

1     CANCELLED:值为1,在同步队列中等待的线程等待超时或被中断,需要从同步队列中取消该Node的结点,其结点的waitStatus为CANCELLED,即结束状态,
进入该状态后的结点将不会再变化。
2 SIGNAL:值为-1,被标识为该等待唤醒状态的后继结点,当其前继结点的线程释放了同步锁或被取消,将会通知该后继结点的线程执行。说白了,就是处于唤醒状态,
只要前继结点释放锁,就会通知标识为SIGNAL状态的后继结点的线程执行。
3 CONDITION:值为-2,与Condition相关,该标识的结点处于等待队列中,结点的线程等待在Condition上,当其他线程调用了Condition的signal()方法后,
CONDITION状态的结点将从等待队列转移到同步队列中,等待获取同步锁。
4 PROPAGATE:值为-3,与共享模式相关,在共享模式中,该状态标识结点的线程处于可运行状态。 5 0状态:值为0,代表初始化状态。 6 AQS在判断状态时,通过用waitStatus>0表示取消状态,而waitStatus<0表示有效状态。

enq(Node)

    此方法用于将node加入队尾,采用终极自旋方式保证一定加入队尾。CAS自旋volatile变量,是一种很经典的用法。

private Node enq(final Node node) {
     //CAS"自旋",直到成功加入队尾
    for (;;) {
         Node t = tail;
         if (t == null) { // 队列为空,创建一个空的标志结点作为head结点,并将tail也指向它。
             if (compareAndSetHead(new Node()))
                 tail = head;
         } else {//正常流程,放入队尾
            node.prev = t;
             if (compareAndSetTail(t, node)) {
                 t.next = node;
                 return t;
             }
         }
     }
}

acquireQueued(Node, int)

     通过tryAcquire()和addWaiter(),该线程获取资源失败,已经被放入等待队列尾部了。该线程下一部进入等待状态休息,直到其他线程彻底释放资源后唤醒自己,自己再拿到资源,然后就可以去干自己想干的事了。acquireQueued()就是干这件事:在等待队列中排队拿号(中间没其它事干可以休息),直到拿到号后再返回,这个函数非常关键。

 1 final boolean acquireQueued(final Node node, int arg) {
 2     boolean failed = true;//标记是否成功拿到资源
 3     try {
 4          boolean interrupted = false;//标记等待过程中是否被中断过
 5         //又是一个“自旋”!
 6         for (;;) {
 7             final Node p = node.predecessor();//拿到前驱
 8             //如果前驱是head,即该结点已成老二,那么便有资格去尝试获取资源(可能是老大释放完资源唤醒自己的,当然也可能被interrupt了)。
 9             if (p == head && tryAcquire(arg)) {
10                 setHead(node);//拿到资源后,将head指向该结点。所以head所指的标杆结点,就是当前获取到资源的那个结点或null。
11                 p.next = null; 
// setHead中node.prev已置为null,此处再将head.next置为null,就是为了方便GC回收以前的head结点。也就意味着之前拿完资源的结点出队了! 12 failed = false; 13 return interrupted;//返回等待过程中是否被中断过 14 } 15 16 //如果自己可以休息了,就进入waiting状态,直到被unpark() 17 if (shouldParkAfterFailedAcquire(p, node) && 18 parkAndCheckInterrupt()) 19 interrupted = true;//如果等待过程中被中断过,哪怕只有那么一次,就将interrupted标记为true 20 } 21 } finally { 22 if (failed) 23 cancelAcquire(node); 24 } 25 }

 到这里了,我们先看看shouldParkAfterFailedAcquire()和parkAndCheckInterrupt()具体干些什么。

shouldParkAfterFailedAcquire(Node, Node)

   此方法主要用于检查状态,看看自己是否真的可以去休息了,以免队列前边的线程都放弃了盲等。

 1 private static boolean shouldParkAfterFailedAcquire(Node pred, Node node) {
 2      int ws = pred.waitStatus;//拿到前驱的状态
 3       if (ws == Node.SIGNAL)
 4          //如果已经告诉前驱拿完号后通知自己一下,那就可以安心休息了
 5         return true;
 6         if (ws > 0) {
 7          /*
 8          * 如果前驱放弃了,那就一直往前找,直到找到最近一个正常等待的状态,并排在它的后边。
 9          * 注意:那些放弃的结点,由于被自己“加塞”到它们前边,它们相当于形成一个无引用链,
10          *           稍后就会被GC回收
11         */
12          do {
13              node.prev = pred = pred.prev;
14           } while (pred.waitStatus > 0);
15            pred.next = node;
16      } else {
17           //如果前驱正常,那就把前驱的状态设置成SIGNAL,告诉它拿完号后通知自己一下。
18          //有可能失败,前驱说不定刚刚释放完。
19          compareAndSetWaitStatus(pred, ws, Node.SIGNAL);
20      }
21       return false;
22 }

      整个流程中,如果前驱结点的状态不是SIGNAL,那么自己就不能安心去休息,需要去找个安心的休息点,同时可以再尝试下看有没有机会轮到自己拿号。

1 parkAndCheckInterrupt()
2    如果线程找好安全休息点后,那就可以安心去休息了。此方法就是让线程去休息,真正进入等待状态。
3 private final boolean parkAndCheckInterrupt() {
4      LockSupport.park(this);//调用park()使线程进入waiting状态
5      return Thread.interrupted();//如果被唤醒,查看自己是不是被中断的。
6 }

    park()会让当前线程进入waiting状态。在此状态下,有两种途径可以唤醒该线程:1)被unpark();2)被interrupt()。需要注意的是,Thread.interrupted()会清除当前线程的中断标记位。
    至此,我们看一下前面的总函数就知道了整个流程了:

2.1.2、release(int)

  这里我们来讲一下acquire()的反操作release()。此方法是独占模式下线程释放共享资源的顶层入口。它会释放指定量的资源,如果彻底释放(即state=0),则唤醒等待队列里的其他线程。

1 public final boolean release(int arg) {
2     if (tryRelease(arg)) {
3          Node h = head;//找到头结点
4        if (h != null && h.waitStatus != 0)
5             unparkSuccessor(h);//唤醒等待队列里的下一个线程
6          return true;
7      }
8      return false;
9 }

   逻辑并不复杂。调用tryRelease()来释放资源。有一点需要注意的是,它是根据tryRelease()的返回值来判断该线程是否已经完成释放掉资源了,所以自定义同步器在设计tryRelease()的时候要明确这一点。

tryRelease(int)

1 protected boolean tryRelease(int arg) {
2     throw new UnsupportedOperationException();
3 }

  跟tryAcquire()一样,这个方法是需要独占模式的自定义同步器去实现。正常来说,tryRelease()都会成功的,因为这是独占模式,该线程来释放资源,那么它肯定已经拿到独占资源了,直接减掉相应量的资源即可(state-=arg),也不需要考虑线程安全的问题。但要注意它的返回值,release()是根据tryRelease()的返回值来判断该线程是否已经完成释放掉资源了,所以自义定同步器在实现时,如果已经彻底释放资源(state=0),要返回true,否则返回false。

unparkSuccessor(Node)

  此方法用于唤醒等待队列中下一个线程。

 1 private void unparkSuccessor(Node node) {
 2     //这里,node一般为当前线程所在的结点。
 3         int ws = node.waitStatus;
 4      if (ws < 0)//置零,当前线程所在的结点状态,允许失败。
 5          compareAndSetWaitStatus(node, ws, 0);
 6      Node s = node.next;//找到下一个需要唤醒的结点s
 7      if (s == null || s.waitStatus > 0) {//如果为空或已取消
 8         s = null;
 9         for (Node t = tail; t != null && t != node; t = t.prev)
10             if (t.waitStatus <= 0)//从这里可以看出,<=0的结点,都是还有效的结点。
11                  s = t;
12      }
13      if (s != null)
14           LockSupport.unpark(s.thread);//唤醒
15  }

     用unpark()唤醒等待队列中最前边的那个未放弃线程,这里我们也用s来表示吧。此时,再和acquireQueued()联系起来,s被唤醒后,进入if (p == head && tryAcquire(arg))的判断(即使p!=head也没关系,它会再进入shouldParkAfterFailedAcquire()寻找一个安全点。这里既然s已经是等待队列中最前边的那个未放弃线程了,那么通过shouldParkAfterFailedAcquire()的调整,s也必然会跑到head的next结点,下一次自旋p==head就成立啦),然后s把自己设置成head标杆结点,表示自己已经获取到资源了,acquire()也返回了。
  release()是独占模式下线程释放共享资源的顶层入口。它会释放指定量的资源,如果彻底释放了(即state=0),它会唤醒等待队列里的其他线程来获取资源。


    同样的让我们再来看看对于共享锁的情况下,资源的获取和释放。

2.1.3、acquireShared(int)

  此方法是共享模式下线程获取共享资源的顶层入口。它会获取指定量的资源,获取成功则直接返回,获取失败则进入等待队列,直到获取到资源为止,整个过程忽略中断。

1 public final void acquireShared(int arg) {
2     if (tryAcquireShared(arg) < 0)
3         doAcquireShared(arg);
4     }
5 }

  这里tryAcquireShared()依然需要自定义同步器去实现。但是AQS已经把其返回值的语义定义好了:负值代表获取失败;0代表获取成功,但没有剩余资源;正数表示获取成功,还有剩余资源,其他线程还可以去获取。所以这里acquireShared()的流程就是:
    tryAcquireShared()尝试获取资源,成功则直接返回;失败则通过doAcquireShared()进入等待队列,直到获取到资源为止才返回。

doAcquireShared(int)

  此方法用于将当前线程加入等待队列尾部休息,直到其他线程释放资源唤醒自己,自己成功拿到相应量的资源后才返回。

 1 private void doAcquireShared(int arg) {
 2     final Node node = addWaiter(Node.SHARED);//加入队列尾部
 3     boolean failed = true;//是否成功标志
 4     try {
 5          boolean interrupted = false;//等待过程中是否被中断过的标志
 6          for (;;) {
 7              final Node p = node.predecessor();//前驱
 8              if (p == head) {//如果到head的下一个,因为head是拿到资源的线程,此时node被唤醒,很可能是head用完资源来唤醒自己的
 9                  int r = tryAcquireShared(arg);//尝试获取资源
10                  if (r >= 0) {//成功
11                      setHeadAndPropagate(node, r);//将head指向自己,还有剩余资源可以再唤醒之后的线程
12                      p.next = null; // help GC
13                      if (interrupted)//如果等待过程中被打断过,此时将中断补上
14                          selfInterrupt();
15                      failed = false;
16                      return;
17                  }
18               }
19              //判断状态,寻找安全点,进入waiting状态,等着被unpark()或interrupt()
20              if (shouldParkAfterFailedAcquire(p, node) &&
21                  parkAndCheckInterrupt())
22                  interrupted = true;
23               }
24           }
25      } finally {
26          if (failed)
27              cancelAcquire(node);
28      }
29 }

    其实和acquireQueued()流程并没有太大区别。只不过这里将补中断的selfInterrupt()放到doAcquireShared()里了,而独占模式是放到acquireQueued()之外。
  跟独占模式比,还有一点需要注意的是,这里只有线程是head.next时(“老二”),才会去尝试获取资源,有剩余的话还会唤醒之后的队友。那么问题就来了,假如老大用完后释放了5个资源,而老二需要6个,老三需要1个,老四需要2个。老大先唤醒老二,老二一看资源不够,他是把资源让给老三呢,还是不让?答案是否定的!老二会继续park()等待其他线程释放资源,也更不会去唤醒老三和老四了。独占模式,同一时刻只有一个线程去执行,这样做未尝不可;但共享模式下,多个线程是可以同时执行的,现在因为老二的资源需求量大,而把后面量小的老三和老四也都卡住了。当然,这并不是问题,只是AQS保证严格按照入队顺序唤醒罢了(保证公平,但降低了并发)。

setHeadAndPropagate(Node, int)

    此方法在setHead()的基础上多了一步,就是自己苏醒的同时,如果条件符合(比如还有剩余资源),还会去唤醒后继结点,毕竟是共享模式。

 1 private void setHeadAndPropagate(Node node, int propagate) {
 2      Node h = head;
 3     setHead(node);//head指向自己
 4       //如果还有剩余量,继续唤醒下一个邻居线程
 5      if (propagate > 0 || h == null || h.waitStatus < 0) {
 6          Node s = node.next;
 7          if (s == null || s.isShared())
 8              doReleaseShared();
 9     }
10 }

2.1.4、releaseShared()

  我们来看acquireShared()的反操作releaseShared(),此方法是共享模式下线程释放共享资源的顶层入口。它会释放指定量的资源,如果成功释放且允许唤醒等待线程,它会唤醒等待队列里的其他线程来获取资源。

1 public final boolean releaseShared(int arg) {
2     if (tryReleaseShared(arg)) {//尝试释放资源
3         doReleaseShared();//唤醒后继结点
4         return true;
5    }
6     return false;
7 }

     此方法的流程也比较简单,释放掉资源后,唤醒后继。跟独占模式下的release()相似,但是独占模式下的tryRelease()在完全释放掉资源(state=0)后,才会返回true去唤醒其他线程,这主要是基于独占下可重入的考量;而共享模式下的releaseShared()则没有这种要求,共享模式实质就是控制一定量的线程并发执行,那么拥有资源的线程在释放掉部分资源时就可以唤醒后继等待结点。例如资源总量是13,A(5)和B(7)分别获取到资源并发运行,C(4)来时只剩1个资源就需要等待。A在运行过程中释放掉2个资源量,然后tryReleaseShared(2)返回true唤醒C,C一看只有3个仍不够继续等待;随后B又释放2个,tryReleaseShared(2)返回true唤醒C,C一看有5个够自己用了,然后C就可以跟A和B一起运行。而ReentrantReadWriteLock读锁的tryReleaseShared()只有在完全释放掉资源(state=0)才返回true,所以自定义同步器可以根据需要决定tryReleaseShared()的返回值。

doReleaseShared()

    此方法用于唤醒后继。

 1 private void doReleaseShared() {
 2     for (;;) {
 3        Node h = head;
 4         if (h != null && h != tail) {
 5            int ws = h.waitStatus;
 6            if (ws == Node.SIGNAL) {
 7                  if (!compareAndSetWaitStatus(h, Node.SIGNAL, 0))
 8                      continue;
 9                  unparkSuccessor(h);//唤醒后继
10            }
11            else if (ws == 0 &&
12                       !compareAndSetWaitStatus(h, 0, Node.PROPAGATE))
13                  continue;
14          }
15          if (h == head)// head发生变化
16                break;
17      }
18 }

    至此我们详解了独占和共享两种模式下获取-释放资源(acquire-release、acquireShared-releaseShared)的源码,值得注意的是,acquire()和acquireShared()两种方法下,线程在等待队列中都是忽略中断的。AQS也支持响应中断的,acquireInterruptibly()/acquireSharedInterruptibly()即是,这里相应的源码跟acquire()和acquireSahred()差不多。

 

2.3、独占锁和共享锁在实现上的区别

    独占锁的同步状态值为1,即同一时刻只能有一个线程成功获取同步状态。共享锁的同步状态>1,取值由上层同步组件确定。
    独占锁队列中头节点运行完成后释放它的直接后继节点。共享锁队列中头节点运行完成后释放它后面的所有节点。
    共享锁中会出现多个线程(即同步队列中的节点)同时成功获取同步状态的情况。

 2.4、简单使用

   既然明白基本的操作机理,我们就可以实现自己的锁机制了,比如mutex这种不可重入的互斥锁。

 1 class Mutex implements Lock, java.io.Serializable {
 2     // 自定义同步器
 3     private static class Sync extends AbstractQueuedSynchronizer {
 4         // 判断是否锁定状态
 5         protected boolean isHeldExclusively() {
 6             return getState() == 1;
 7         }
 8 
 9         // 尝试获取资源,立即返回。成功则返回true,否则false。
10         public boolean tryAcquire(int acquires) {
11             assert acquires == 1; // 这里限定只能为1个量
12             if (compareAndSetState(0, 1)) {//state为0才设置为1,不可重入!
13                 setExclusiveOwnerThread(Thread.currentThread());//设置为当前线程独占资源
14                 return true;
15             }
16             return false;
17         }
18 
19         // 尝试释放资源,立即返回。成功则为true,否则false。
20         protected boolean tryRelease(int releases) {
21             assert releases == 1; // 限定为1个量
22             if (getState() == 0)//既然来释放,那肯定就是已占有状态了。只是为了保险,多层判断!
23                 throw new IllegalMonitorStateException();
24             setExclusiveOwnerThread(null);
25             setState(0);//释放资源,放弃占有状态
26             return true;
27         }
28     }
29 
30     // 真正同步类的实现都依赖继承于AQS的自定义同步器!
31     private final Sync sync = new Sync();
32 
33     //lock<-->acquire。两者语义一样:获取资源,即便等待,直到成功才返回。
34     public void lock() {
35         sync.acquire(1);
36     }
37 
38     //tryLock<-->tryAcquire。两者语义一样:尝试获取资源,要求立即返回。成功则为true,失败则为false。
39     public boolean tryLock() {
40         return sync.tryAcquire(1);
41     }
42 
43     //unlock<-->release。两者语义一样:释放资源。
44     public void unlock() {
45         sync.release(1);
46     }
47 
48     //锁是否占有状态
49     public boolean isLocked() {
50         return sync.isHeldExclusively();
51     }
52 }

    同步类在实现时一般都将自定义同步器(sync)定义为内部类,供自己使用;而同步类自己(Mutex)则实现某个接口,对外服务。当然,接口的实现要直接依赖sync,它们在语义上也存在某种对应关系,而sync只用实现资源state的获取-释放方式tryAcquire-tryRelelase,至于线程的排队、等待、唤醒等,上层的AQS都已经实现好了,我们不用关心。
   除了Mutex,ReentrantLock/CountDownLatch/Semphore这些同步类的实现方式都差不多,不同的地方就在获取-释放资源的方式tryAcquire-tryRelelase。掌握了这点,AQS的核心便被攻破了。

以上是关于沉淀再出发:关于java中的AQS理解的主要内容,如果未能解决你的问题,请参考以下文章

沉淀再出发:关于IntelliJ IDEA使用的一些总结

沉淀再出发:再谈java的多线程机制

沉淀再出发:java中注解的本质和使用

沉淀再出发:如何在eclipse中查看java的核心代码

沉淀再出发:java中的CAS和ABA问题整理

沉淀再出发:jvm的本质