3.2spark集群运行应用之第三方jar的处理方式

Posted 专治spark

tags:

篇首语:本文由小常识网(cha138.com)小编为大家整理,主要介绍了3.2spark集群运行应用之第三方jar的处理方式相关的知识,希望对你有一定的参考价值。

在编写程序时,不可避免会用到第三方jar,有三种使用方式:

1、将运行程序需要的所有第三方 jar,分发到所有spark的/soft/spark/jars下

2、将第三方jar打散,和自己的源码打成一个jar包,如3.1中

3、在spark-submit命令中,通过--jars指定使用的第三方jar包

  在s102上提交,fastjson-1.2.47.jar 本地,myspark.jar本地,temptags.txt HDFS上

spark-submit --class a --jars fastjson-1.2.47.jar --master spark://s101:7077 myspark.jar temptags.txt

  spark-shell脚本也用到spark-submit,因此也可以通过spark-shell指定第三方 jar

spark-shell --master spark://s101:7077 --jars fastjson-1.2.47.jar  //该jar在本地
import java.util._
import scala.collection.JavaConversions._
import scala.collection.JavaConverters._
import com.alibaba.fastjson._
def pp(line: String)={  //解析方法
    val list = new ArrayList[String]

    val jsonObject = JSON.parseObject(line)
    val extInfoList = jsonObject.getJSONArray("extInfoList")

    if (extInfoList != null && extInfoList.size != 0) {
        for (o <- extInfoList) {
            val jo = o.asInstanceOf[JSONObject]
            if (jo.get("title") == "contentTags") {
                val values = jo.getJSONArray("values")
                for (value <- values) {
                    list.add(value.toString)
                }
            }
        }
    }
    list
}
val rdd1 = sc.textFile("myspark/temptags.txt")
val rdd2 = rdd1.map(s => {val sp = s.split("	");val lst = pp(sp(1));(sp(0), lst)}).filter(_._2.size() > 0)
val rdd3 = rdd2.flatMapValues(_.asScala).map(t=>((t._1,t._2),1)).reduceByKey((a,b)=>a+b).groupBy(_._1._1).mapValues(_.map(t=>(t._1._2,t._2)))
val rdd4 = rdd3.mapValues(_.toList.sortBy(-_._2)).sortBy(-_._2(0)._2)
val rdd5 = rdd4.collect()
rdd5.foreach(println)

 

以上是关于3.2spark集群运行应用之第三方jar的处理方式的主要内容,如果未能解决你的问题,请参考以下文章

saveAsTextFile 在 spark java.io.IOException 中挂起:数据框中的对等方重置连接

Spark应用程序第三方jar文件依赖解决方案

spark应用程序引用别的jar包

在仅支持 Spark 1.6 的集群上运行带有 Spark 2.0 的 Fat Jar

Spark集群管理器介绍

Spark集群上运行jar程序,状态一直Accepted且不停止不报错