1.1概述
HashMap基于Map接口实现,元素以键值对的方式存储,并且允许使用null键和null值, 因为key不允许重复,因此只能有一个键为null,另外HashMap不能保证放入元素的顺序,它是无序的,和放入的顺序并不能相同。HashMap是线程不安全的。
1.2详解
在jdk1.7中HashMap的主干是一个Entry数组。Entry是HashMap的基本组成单元,每一个Entry包含一个key-value键值对。(其实所谓Map其实就是保存了两个对象之间的映射关系的一种集合)
//HashMap的主干数组,可以看到就是一个Entry数组,初始值为空数组{},主干数组的长度一定是2的次幂。
transient Entry<K,V>[] table = (Entry<K,V>[]) EMPTY_TABLE;
Entry是HashMap中的一个静态内部类。代码如下:
static class Entry<K,V> implements Map.Entry<K,V> {
final K key;
V value;
//存储指向下一个Entry的引用,单链表结构
Entry<K,V> next;
//对key的hashcode值进行hash运算后得到的值,存储在Entry,避免重复计算
int hash;
//构造函数
Entry(int h, K k, V v, Entry<K,V> n) {
value = v;
next = n;
key = k;
hash = h;
}
jdk1.7及其之前版本中几个比较重要的字段(jdk1.8以后只是加了一些重要字段,原来这些依旧存在):
//实际存储的key-value键值对的个数
transient int size;
//阈值,当table == {}时,该值为初始容量(初始容量默认为16);当table被填充了,也就是为table分配内存空间后,threshold一般为 capacity*loadFactory。
int threshold;
//负载因子,代表了table的填充度有多少,默认是0.75,负载因子存在的原因,还是因为减缓哈希冲突,如果初始桶为16,等到满16个元素才扩容,某些桶里可能就有不止一个元素了。
//若小于0.75如0.5,则数组长度达到一半大小就需要扩容,空间使用率大大降低,
//若大于0.75如0.8,则会增大hash冲突的概率,影响查询效率。
final float loadFactor;
//HashMap被改变的次数,由于HashMap非线程安全,在对HashMap进行迭代时,如果期间其他线程的参与导致HashMap的结构发生变化了(比如put,remove等操作),需要抛出异常ConcurrentModificationException
//fail-fast机制,在通过迭代器遍历集合时,迭代器会有一个对应的属性值初始化为modCount,当该属性值和modCount不等时,说明modCount被修改了。直接抛出异常
transient int modCount;
HashMap有4个构造器,其他构造器如果用户没有传入initialCapacity 和loadFactor这两个参数,会使用默认值。initialCapacity默认为16,loadFactory默认为0.75,其中的init方法在HashMap中没有实际实现,不过在其子类如linkedHashMap中就会有对应实现
public HashMap(int initialCapacity, float loadFactor) {
//此处对传入的初始容量进行校验,最大不能超过MAXIMUM_CAPACITY = 1<<30(230)
if (initialCapacity < 0)
throw new IllegalArgumentException("Illegal initial capacity: " +
initialCapacity);
if (initialCapacity > MAXIMUM_CAPACITY)
initialCapacity = MAXIMUM_CAPACITY;
if (loadFactor <= 0 || Float.isNaN(loadFactor))
throw new IllegalArgumentException("Illegal load factor: " +
loadFactor);
this.loadFactor = loadFactor;
threshold = initialCapacity;
init();//init方法在HashMap中没有实际实现,不过在其子类如 linkedHashMap中就会有对应实现
}
上面可以看出其实初始化的时候并没有创建Entry<K,V>数组。然后看看put方法:
- 判断当前数组是否需要初始化。
- 如果 key 为空,则 put 一个空值进去。
- 根据 key 计算出 hashcode。
- 根据计算出的 hashcode 定位出所在桶。
- 如果桶是一个链表则需要遍历判断里面的 hashcode、key 是否和传入 key 相等,如果相等则进行覆盖,并返回原来的值。
- 如果桶是空的,说明当前位置没有数据存入;新增一个 Entry 对象写入当前位置。
public V put(K key, V value) {
//如果table数组为空数组{},进行数组填充(为table分配实际内存空间),入参为threshold。
if (table == EMPTY_TABLE) {
inflateTable(threshold);
}
//如果key为null,存储位置为table[0]或table[0]的冲突链上
if (key == null)
return putForNullKey(value);
//对key的hashcode进一步计算,确保散列均匀
int hash = hash(key);
//获取在table中的实际位置
int i = indexFor(hash, table.length);
for (Entry<K,V> e = table[i]; e != null; e = e.next) {
//如果该对应数据已存在,执行覆盖操作。用新value替换旧value,并返回旧value
Object k;
if (e.hash == hash && ((k = e.key) == key || key.equals(k))) {
V oldValue = e.value;
e.value = value;
e.recordAccess(this);
return oldValue;
}
}
//保证并发访问时,若HashMap内部结构发生变化,快速响应失败
modCount++;
addEntry(hash, key, value, i);//新增一个entry
return null;
}
需要注意的地方,在指定容量时,最后生成的容量是向上取整的2的次幂。
private void inflateTable(int toSize) {
int capacity = roundUpToPowerOf2(toSize);//capacity一定是2的次幂
/**此处为threshold赋值,取capacity*loadFactor和MAXIMUM_CAPACITY+1的最小值,
capaticy一定不会超过MAXIMUM_CAPACITY,除非loadFactor大于1 */
threshold = (int) Math.min(capacity * loadFactor, MAXIMUM_CAPACITY + 1);
table = new Entry[capacity];
initHashSeedAsNeeded(capacity);
}
然后看看增加元素的操作:
void addEntry(int hash, K key, V value, int bucketIndex) {
if ((size >= threshold) && (null != table[bucketIndex])) {
resize(2 * table.length);//当size超过临界阈值threshold,并且即将发生哈希冲突时进行扩容
hash = (null != key) ? hash(key) : 0;
bucketIndex = indexFor(hash, table.length);
}
createEntry(hash, key, value, bucketIndex);
}
当发生哈希冲突并且size大于阈值的时候,需要进行数组扩容,扩容时,需要新建一个长度为之前数组2倍的新的数组,然后将当前的Entry数组中的元素全部传输过去,扩容后的新数组长度为之前的2倍,所以扩容相对来说是个耗资源的操作。
然后取元素:
- 首先也是根据 key 计算出 hashcode,然后定位到具体的桶中。
- 判断该位置是否为链表。
- 不是链表就根据 key、key 的 hashcode 是否相等来返回值。
- 为链表则需要遍历直到 key 及 hashcode 相等时候就返回值。
- 啥都没取到就直接返回 null 。
public V get(Object key) {
//如果key为null,则直接去table[0]处去检索即可。
if (key == null)
return getForNullKey();
Entry<K,V> entry = getEntry(key);
return null == entry ? null : entry.getValue();
}
final Entry<K,V> getEntry(Object key) {
if (size == 0) {
return null;
}
//通过key的hashcode值计算hash值
int hash = (key == null) ? 0 : hash(key);
//indexFor (hash&length-1) 获取最终数组索引,然后遍历链表,通过equals方法比对找出对应记录
for (Entry<K,V> e = table[indexFor(hash, table.length)];
e != null;
e = e.next) {
Object k;
if (e.hash == hash &&
((k = e.key) == key || (key != null && key.equals(k))))
return e;
}
return null;
}
在jdk1.8以后,增加了红黑树结构来优化hashmap,所以在一些逻辑代码上进行了修改,首先增加了一些重要的字段,修改了一些字段,Entry->Node 为了适应红黑树的treenode.
//刚才提到了当链表长度过长时,会有一个阈值,超过这个阈值8就会转化为红黑树
static final int TREEIFY_THRESHOLD = 8;
//当红黑树上的元素个数,减少到6个时,就退化为链表
static final int UNTREEIFY_THRESHOLD = 6;
//链表转化为红黑树,除了有阈值的限制,还有另外一个限制,需要数组容量至少达到64,才会树化。
//这是为了避免,数组扩容和树化阈值之间的冲突。防止你在哪里反复变身
static final int MIN_TREEIFY_CAPACITY = 64;
//普通单向链表节点类
static class Node<K,V> implements Map.Entry<K,V> {
//key的hash值,put和get的时候都需要用到它来确定元素在数组中的位置
final int hash;
final K key;
V value;
//指向单链表的下一个节点
Node<K,V> next;
Node(int hash, K key, V value, Node<K,V> next) {
this.hash = hash;
this.key = key;
this.value = value;
this.next = next;
}
}
//转化为红黑树的节点类
static final class TreeNode<K,V> extends LinkedHashMap.Entry<K,V> {
//当前节点的父节点
TreeNode<K,V> parent;
//左孩子节点
TreeNode<K,V> left;
//右孩子节点
TreeNode<K,V> right;
//指向前一个节点
TreeNode<K,V> prev; // needed to unlink next upon deletion
//当前节点是红色或者黑色的标识
boolean red;
TreeNode(int hash, K key, V val, Node<K,V> next) {
super(hash, key, val, next);
}
}
put方法也进行了修改:
- 判断当前桶是否为空,空的就需要初始化(resize 中会判断是否进行初始化)。
- 根据当前 key 的 hashcode 定位到具体的桶中并判断是否为空,为空表明没有 Hash 冲突就直接在当前位置创建一个新桶即可。
- 如果当前桶有值( Hash 冲突),那么就要比较当前桶中的 key、key 的 hashcode 与写入的 key 是否相等,相等就赋值给 e,在第 8 步的时候会统一进行赋值及返回。
- 如果当前桶为红黑树,那就要按照红黑树的方式写入数据。
- 如果是个链表,就需要将当前的 key、value 封装成一个新节点写入到当前桶的后面(形成链表)。
- 接着判断当前链表的大小是否大于预设的阈值,大于时就要转换为红黑树。
- 如果在遍历过程中找到 key 相同时直接退出遍历。
- 如果 e != null 就相当于存在相同的 key,那就需要将值覆盖。
- 最后判断是否需要进行扩容。
public V put(K key, V value) {
return putVal(hash(key), key, value, false, true);
}
//hash值、当前的key、value、这里onlyIfAbsent如果为true,表明不能修改已经存在的值,因此我们传入false、evict只有在方法 afterNodeInsertion(boolean evict) { }用到,可以看到它是一个空实现,因此不用关注这个参数
final V putVal(int hash, K key, V value, boolean onlyIfAbsent,
boolean evict) {
Node<K,V>[] tab; Node<K,V> p; int n, i;
//判断table是否为空,如果空的话,会先调用resize扩容
if ((tab = table) == null || (n = tab.length) == 0)
n = (tab = resize()).length;
//根据当前key的hash值找到它在数组中的下标,判断当前下标位置是否已经存在元素,若没有,则把key、value包装成Node节点,直接添加到此位置。
if ((p = tab[i = (n - 1) & hash]) == null)
tab[i] = newNode(hash, key, value, null);
else {
//如果当前位置已经有元素了,分为三种情况。
Node<K,V> e; K k;
//1.当前位置元素的hash值等于传过来的hash,并且他们的key值也相等,
//则把p赋值给e,跳转到①处,后续需要做值的覆盖处理
if (p.hash == hash &&
((k = p.key) == key || (key != null && key.equals(k))))
e = p;
//2.如果当前是红黑树结构,则把它加入到红黑树
else if (p instanceof TreeNode)
e = ((TreeNode<K,V>)p).putTreeVal(this, tab, hash, key, value);
else {
//3.说明此位置已存在元素,并且是普通链表结构,则采用尾插法,把新节点加入到链表尾部
for (int binCount = 0; ; ++binCount) {
if ((e = p.next) == null) {
//如果头结点的下一个节点为空,则插入新节点
p.next = newNode(hash, key, value, null);
//如果在插入的过程中,链表长度超过了8,则转化为红黑树
if (binCount >= TREEIFY_THRESHOLD - 1) // -1 for 1st
treeifyBin(tab, hash);
//插入成功之后,跳出循环,跳转到①处
break;
}
//若在链表中找到了相同key的话,直接退出循环,跳转到①处
if (e.hash == hash &&
((k = e.key) == key || (key != null && key.equals(k))))
break;
p = e;
}
}
//①
//说明发生了碰撞,e代表的是旧值,因此节点位置不变,但是需要替换为新值
if (e != null) { // existing mapping for key
V oldValue = e.value;
//用新值替换旧值,并返回旧值。
if (!onlyIfAbsent || oldValue == null)
e.value = value;
//看方法名字即可知,这是在node被访问之后需要做的操作。其实此处是一个空实现,
//只有在 LinkedHashMap才会实现,用于实现根据访问先后顺序对元素进行排序,hashmap不提供排序功能
// Callbacks to allow LinkedHashMap post-actions
//void afterNodeAccess(Node<K,V> p) { }
afterNodeAccess(e);
return oldValue;
}
}
//fail-fast机制
++modCount;
//如果当前数组中的元素个数超过阈值,则扩容
if (++size > threshold)
resize();
//同样的空实现
afterNodeInsertion(evict);
return null;
}
resize函数
final Node<K,V>[] resize() {
//旧数组
Node<K,V>[] oldTab = table;
//旧数组的容量
int oldCap = (oldTab == null) ? 0 : oldTab.length;
//旧数组的扩容阈值,注意看,这里取的是当前对象的 threshold 值,下边的第2种情况会用到。
int oldThr = threshold;
//初始化新数组的容量和阈值,分三种情况讨论。
int newCap, newThr = 0;
//1.当旧数组的容量大于0时,说明在这之前肯定调用过 resize扩容过一次,才会导致旧容量不为0。
//为什么这样说呢,之前我在 tableSizeFor 卖了个关子,需要注意的是,它返回的值是赋给了 threshold 而不是 capacity。
//我们在这之前,压根就没有在任何地方看到过,它给 capacity 赋初始值。
if (oldCap > 0) {
//容量达到了最大值
if (oldCap >= MAXIMUM_CAPACITY) {
threshold = Integer.MAX_VALUE;
return oldTab;
}
//新数组的容量和阈值都扩大原来的2倍
else if ((newCap = oldCap << 1) < MAXIMUM_CAPACITY &&
oldCap >= DEFAULT_INITIAL_CAPACITY)
newThr = oldThr << 1; // double threshold
}
//2.到这里,说明 oldCap <= 0,并且 oldThr(threshold) > 0,这就是 map 初始化的时候,第一次调用 resize的情况
//而 oldThr的值等于 threshold,此时的 threshold 是通过 tableSizeFor 方法得到的一个2的n次幂的值(我们以16为例)。
//因此,需要把 oldThr 的值,也就是 threshold ,赋值给新数组的容量 newCap,以保证数组的容量是2的n次幂。
//所以我们可以得出结论,当map第一次 put 元素的时候,就会走到这个分支,把数组的容量设置为正确的值(2的n次幂)
//但是,此时 threshold 的值也是2的n次幂,这不对啊,它应该是数组的容量乘以加载因子才对。别着急,这个会在③处理。
else if (oldThr > 0) // initial capacity was placed in threshold
newCap = oldThr;
//3.到这里,说明 oldCap 和 oldThr 都是小于等于0的。也说明我们的map是通过默认无参构造来创建的,
//于是,数组的容量和阈值都取默认值就可以了,即 16 和 12。
else { // zero initial threshold signifies using defaults
newCap = DEFAULT_INITIAL_CAPACITY;
newThr = (int)(DEFAULT_LOAD_FACTOR * DEFAULT_INITIAL_CAPACITY);
}
//③ 这里就是处理第2种情况,因为只有这种情况 newThr 才为0,
//因此计算 newThr(用 newCap即16 乘以加载因子 0.75,得到 12) ,并把它赋值给 threshold
if (newThr == 0) {
float ft = (float)newCap * loadFactor;
newThr = (newCap < MAXIMUM_CAPACITY && ft < (float)MAXIMUM_CAPACITY ?
(int)ft : Integer.MAX_VALUE);
}
//赋予 threshold 正确的值,表示数组下次需要扩容的阈值(此时就把原来的 16 修正为了 12)。
threshold = newThr;
@SuppressWarnings({"rawtypes","unchecked"})
//我们可以发现,在构造函数时,并没有创建数组,在第一次调用put方法,导致resize的时候,才会把数组创建出来。这是为了延迟加载,提高效率。
Node<K,V>[] newTab = (Node<K,V>[])new Node[newCap];
table = newTab;
//如果原来的数组不为空,那么我们就需要把原来数组中的元素重新分配到新的数组中
//如果是第2种情况,由于是第一次调用resize,此时数组肯定是空的,因此也就不需要重新分配元素。
if (oldTab != null) {
//遍历旧数组
for (int j = 0; j < oldCap; ++j) {
Node<K,V> e;
//取到当前下标的第一个元素,如果存在,则分三种情况重新分配位置
if ((e = oldTab[j]) != null) {
oldTab[j] = null;
//1.如果当前元素的下一个元素为空,则说明此处只有一个元素
//则直接用它的hash()值和新数组的容量取模就可以了,得到新的下标位置。
if (e.next == null)
newTab[e.hash & (newCap - 1)] = e;
//2.如果是红黑树结构,则拆分红黑树,必要时有可能退化为链表
else if (e instanceof TreeNode)
((TreeNode<K,V>)e).split(this, newTab, j, oldCap);
//3.到这里说明,这是一个长度大于 1 的普通链表,则需要计算并
//判断当前位置的链表是否需要移动到新的位置
else { // preserve order
// loHead 和 loTail 分别代表链表旧位置的头尾节点
Node<K,V> loHead = null, loTail = null;
// hiHead 和 hiTail 分别代表链表移动到新位置的头尾节点
Node<K,V> hiHead = null, hiTail = null;
Node<K,V> next;
do {
next = e.next;
//如果当前元素的hash值和oldCap做与运算为0,则原位置不变
if ((e.hash & oldCap) == 0) {
if (loTail == null)
loHead = e;
else
loTail.next = e;
loTail = e;
}
//否则,需要移动到新的位置
else {
if (hiTail == null)
hiHead = e;
else
hiTail.next = e;
hiTail = e;
}
} while ((e = next) != null);
//原位置不变的一条链表,数组下标不变
if (loTail != null) {
loTail.next = null;
newTab[j] = loHead;
}
//移动到新位置的一条链表,数组下标为原下标加上旧数组的容量
if (hiTail != null) {
hiTail.next = null;
newTab[j + oldCap] = hiHead;
}
}
}
}
}
return newTab;
}
1.3 jdk1.7和1.8实现的区别
- JDK1.7用的是头插法,而JDK1.8及之后使用的都是尾插法,那么他们为什么要这样做呢?因为JDK1.7是用单链表进行的纵向延伸,当采用头插法就是能够提高插入的效率,但是也会容易出现逆序且环形链表死循环问题。但是在JDK1.8之后是因为加入了红黑树使用尾插法,能够避免出现逆序且链表死循环的问题。
- 扩容后数据存储位置的计算方式也不一样:1. 在JDK1.7的时候是直接用hash值和需要扩容的二进制数进行&。而在JDK1.8的时候直接用了JDK1.7的时候计算的规律,也就是扩容前的原始位置+扩容的大小值=JDK1.8的计算方式,而不再是JDK1.7的那种异或的方法。但是这种方式就相当于只需要判断Hash值的新增参与运算的位是0还是1就直接迅速计算出了扩容后的储存方式。
- 当然由于引入了红黑树,在put等方法的一些逻辑上也进行了一定程度的修改。
基本操作
遍历
Iterator<Map.Entry<String, Integer>> entryIterator = map.entrySet().iterator();
while (entryIterator.hasNext()) {
Map.Entry<String, Integer> next = entryIterator.next();
System.out.println("key=" + next.getKey() + " value=" + next.getValue());
}
Iterator<String> iterator = map.keySet().iterator();
while (iterator.hasNext()){
String key = iterator.next();
System.out.println("key=" + key + " value=" + map.get(key));
}