ESJava High Level REST Client官方索引和文档操作指导
Posted KeepGoing
tags:
篇首语:本文由小常识网(cha138.com)小编为大家整理,主要介绍了ESJava High Level REST Client官方索引和文档操作指导相关的知识,希望对你有一定的参考价值。
索引操作和文档基本操作
import java.io.IOException;
import java.util.ArrayList;
import java.util.concurrent.TimeUnit;
import org.elasticsearch.action.admin.indices.delete.DeleteIndexRequest;
import org.elasticsearch.action.bulk.BulkRequest;
import org.elasticsearch.action.bulk.BulkResponse;
import org.elasticsearch.action.delete.DeleteRequest;
import org.elasticsearch.action.delete.DeleteResponse;
import org.elasticsearch.action.get.GetRequest;
import org.elasticsearch.action.get.GetResponse;
import org.elasticsearch.action.index.IndexRequest;
import org.elasticsearch.action.index.IndexResponse;
import org.elasticsearch.action.search.SearchRequest;
import org.elasticsearch.action.search.SearchResponse;
import org.elasticsearch.action.support.master.AcknowledgedResponse;
import org.elasticsearch.action.update.UpdateRequest;
import org.elasticsearch.action.update.UpdateResponse;
import org.elasticsearch.client.RequestOptions;
import org.elasticsearch.client.RestHighLevelClient;
import org.elasticsearch.client.indices.CreateIndexRequest;
import org.elasticsearch.client.indices.CreateIndexResponse;
import org.elasticsearch.client.indices.GetIndexRequest;
import org.elasticsearch.common.unit.TimeValue;
import org.elasticsearch.common.xcontent.XContentType;
import org.elasticsearch.index.query.QueryBuilders;
import org.elasticsearch.index.query.TermQueryBuilder;
import org.elasticsearch.search.SearchHit;
import org.elasticsearch.search.builder.SearchSourceBuilder;
import org.elasticsearch.search.fetch.subphase.FetchSourceContext;
import org.junit.jupiter.api.Test;
import org.springframework.beans.factory.annotation.Autowired;
import org.springframework.beans.factory.annotation.Qualifier;
import org.springframework.boot.test.context.SpringBootTest;
import com.alibaba.fastjson.JSON;
/**
* es7.6.x 高级客户端测试 API
*/
@SpringBootTest
public class ElasticsearchJdApplicationTests {
// 面向对象来操作
@Autowired
@Qualifier("restHighLevelClient")
private RestHighLevelClient client;
// 测试索引的创建 Request PUT kuang_index
@Test
void testCreateIndex() throws IOException {
// 1、创建索引请求
CreateIndexRequest request = new CreateIndexRequest("kuang_index");
// 2、客户端执行请求 IndicesClient,请求后获得响应
CreateIndexResponse createIndexResponse = client.indices().create(request, RequestOptions.DEFAULT);
System.out.println(createIndexResponse);
}
// 测试获取索引,判断其是否存在
@Test
void testExistIndex() throws IOException {
GetIndexRequest request = new GetIndexRequest("kuang_index2");
boolean exists = client.indices().exists(request, RequestOptions.DEFAULT);
System.out.println(exists);
}
// 测试删除索引
@Test
void testDeleteIndex() throws IOException {
DeleteIndexRequest request = new DeleteIndexRequest("kuang_index");
// 删除
AcknowledgedResponse delete = client.indices().delete(request, RequestOptions.DEFAULT);
System.out.println(delete.isAcknowledged());
}
// 测试添加文档
@Test
void testAddDocument() throws IOException {
// 创建对象
User user = new User("狂神说", 3);
// 创建请求
IndexRequest request = new IndexRequest("kuang_index");
// 规则 put /kuang_index/_doc/1
request.id("1");
request.timeout(TimeValue.timeValueSeconds(1));
request.timeout("1s");
// 将我们的数据放入请求 json
request.source(JSON.toJSONString(user), XContentType.JSON);
// 客户端发送请求 , 获取响应的结果
IndexResponse indexResponse = client.index(request, RequestOptions.DEFAULT);
System.out.println(indexResponse.toString()); //
System.out.println(indexResponse.status()); // 对应我们命令返回的状态CREATED
}
// 获取文档,判断是否存在 get /index/doc/1
@Test
void testIsExists() throws IOException {
GetRequest getRequest = new GetRequest("kuang_index", "1");
// 不获取返回的 _source 的上下文了
getRequest.fetchSourceContext(new FetchSourceContext(false));
getRequest.storedFields("_none_");
boolean exists = client.exists(getRequest, RequestOptions.DEFAULT);
System.out.println(exists);
}
// 获得文档的信息
@Test
void testGetDocument() throws IOException {
GetRequest getRequest = new GetRequest("kuang_index", "1");
GetResponse getResponse = client.get(getRequest, RequestOptions.DEFAULT);
System.out.println(getResponse.getSourceAsString()); // 打印文档的内容
System.out.println(getResponse); // 返回的全部内容和命令式一样的
}
// 更新文档的信息
@Test
void testUpdateRequest() throws IOException {
UpdateRequest updateRequest = new UpdateRequest("kuang_index", "1");
updateRequest.timeout("1s");
User user = new User("狂神说Java", 18);
updateRequest.doc(JSON.toJSONString(user), XContentType.JSON);
UpdateResponse updateResponse = client.update(updateRequest, RequestOptions.DEFAULT);
System.out.println(updateResponse.status());
}
// 删除文档记录
@Test
void testDeleteRequest() throws IOException {
DeleteRequest request = new DeleteRequest("kuang_index", "1");
request.timeout("1s");
DeleteResponse deleteResponse = client.delete(request, RequestOptions.DEFAULT);
System.out.println(deleteResponse.status());
}
// 特殊的,真的项目一般都会批量插入数据!
@Test
void testBulkRequest() throws IOException {
BulkRequest bulkRequest = new BulkRequest();
bulkRequest.timeout("10s");
ArrayList<User> userList = new ArrayList<>();
userList.add(new User("kuangshen1", 3));
userList.add(new User("kuangshen2", 3));
userList.add(new User("kuangshen3", 3));
userList.add(new User("qinjiang1", 3));
userList.add(new User("qinjiang1", 3));
userList.add(new User("qinjiang1", 3));
// 批处理请求
for (int i = 0; i < userList.size(); i++) {
// 批量更新和批量删除,就在这里修改对应的请求就可以了
bulkRequest.add(new IndexRequest("kuang_index").id("" + (i + 1))
.source(JSON.toJSONString(userList.get(i)), XContentType.JSON));
}
BulkResponse bulkResponse = client.bulk(bulkRequest, RequestOptions.DEFAULT);
System.out.println(bulkResponse.hasFailures()); // 是否失败,返回 false 代表 成功!
}
// 查询
// SearchRequest 搜索请求
// SearchSourceBuilder 条件构造
// HighlightBuilder 构建高亮
// TermQueryBuilder 精确查询
// MatchAllQueryBuilder
// xxx QueryBuilder 对应我们刚才看到的命令!
@Test
void testSearch() throws IOException {
SearchRequest searchRequest = new SearchRequest("kuang_index");
// 构建搜索条件
SearchSourceBuilder sourceBuilder = new SearchSourceBuilder();
sourceBuilder.highlighter();
// 查询条件,我们可以使用 QueryBuilders 工具来实现
// QueryBuilders.termQuery 精确
// QueryBuilders.matchAllQuery() 匹配所有
TermQueryBuilder termQueryBuilder = QueryBuilders.termQuery("name", "qinjiang1");
// MatchAllQueryBuilder matchAllQueryBuilder =
QueryBuilders.matchAllQuery();
sourceBuilder.query(termQueryBuilder);
sourceBuilder.timeout(new TimeValue(60, TimeUnit.SECONDS));
searchRequest.source(sourceBuilder);
SearchResponse searchResponse = client.search(searchRequest, RequestOptions.DEFAULT);
System.out.println(JSON.toJSONString(searchResponse.getHits()));
System.out.println("=================================");
for (SearchHit documentFields : searchResponse.getHits().getHits()) {
System.out.println(documentFields.getSourceAsMap());
}
}
}
REST high level client Javadoc(7.8)
文档接口Document API
Index API 增加文档
ElasticSearch可以直接新增数据,只要你指定了index(索引库名称)即可。在新增的时候你可以自己指定主键ID,也可以不指定,由 ElasticSearch自身生成。Elasticsearch Java High Level REST Client
新增数据提供了四种种方法。
方式一:jsonString
使用IndexRequest设置JSON格式的字符串,新增,可以借助三方件将对象直接转换为JSON
// 指定索引
IndexRequest request = new IndexRequest("posts");
// 设置Document id
request.id("1");
// 构造JSON字符串,可以使用三方件如fastjson、jackson构造,如JSON.toJSONString(user)
String jsonString = "{" +
""user":"kimchy"," +
""postDate":"2013-01-30"," +
""message":"trying out Elasticsearch"" +
"}";
request.source(jsonString, XContentType.JSON);
方式二:Map
通过map创建,会自动转换成JSON的数据
Map<String, Object> jsonMap = new HashMap<>();
jsonMap.put("user", "kimchy");
jsonMap.put("postDate", new Date());
jsonMap.put("message", "trying out Elasticsearch");
// Document source provided as a Map which gets automatically converted to JSON format
IndexRequest indexRequest = new IndexRequest("posts")
.id("1").source(jsonMap);
方式三:XContentBuilder
可以借助XContentBuilder创建对象,会自动转换为JSON格式
XContentBuilder builder = XContentFactory.jsonBuilder();
builder.startObject();
{
builder.field("user", "kimchy");
builder.timeField("postDate", new Date());
builder.field("message", "trying out Elasticsearch");
}
builder.endObject();
// Document source provided as an XContentBuilder object, the Elasticsearch built-in helpers to generate JSON content
IndexRequest indexRequest = new IndexRequest("posts")
.id("1").source(builder);
方式四:key-pairs形式
直接使用对象键对形式构建,会自动转换为JSON格式
// Document source provided as Object key-pairs, which gets converted to JSON format
IndexRequest indexRequest = new IndexRequest("posts")
.id("1")
.source("user", "kimchy",
"postDate", new Date(),
"message", "trying out Elasticsearch");
推荐使用第2、3种方式,代码更易读。
可选参数
IndexRequest提供了以下可选参数:
// 路由参数
request.routing("routing");
// 以TimeValue形式设置主分片超时时间
request.timeout(TimeValue.timeValueSeconds(1));
// 以String形式设置主分片超时时间
request.timeout("1s");
// 使用WriteRequest.RefreshPolicy实例设置刷新策略
request.setRefreshPolicy(WriteRequest.RefreshPolicy.WAIT_UNTIL);
// 使用String设置刷新策略
request.setRefreshPolicy("wait_for");
// 设置version
request.version(2);
// 设置version type
request.versionType(VersionType.EXTERNAL);
// 使用DocWriteRequest.OpType值设置操作类型
request.opType(DocWriteRequest.OpType.CREATE);
// 使用String设置操作类型
request.opType("create");
// 请求执行前需要执行的 ingest pipeline
request.setPipeline("pipeline");
执行操作
分为同步和异步,listener说明同“查询接口Search API->执行查询”小节描述。注意listener泛型为IndexResponse。
// 同步
IndexResponse indexResponse = client.index(request, RequestOptions.DEFAULT);
// 异步
client.indexAsync(request, RequestOptions.DEFAULT, listener);
IndexResponse结果
String index = indexResponse.getIndex();
String id = indexResponse.getId();
if (indexResponse.getResult() == DocWriteResponse.Result.CREATED) {
// 首次创建文档的处理
} else if (indexResponse.getResult() == DocWriteResponse.Result.UPDATED) {
// 已经存在的文档的更新
}
ReplicationResponse.ShardInfo shardInfo = indexResponse.getShardInfo();
if (shardInfo.getTotal() != shardInfo.getSuccessful()) {
// 执行成功的分片数少于总分片数时,在此处处理
}
if (shardInfo.getFailed() > 0) {
for (ReplicationResponse.ShardInfo.Failure failure :
shardInfo.getFailures()) {
// 失败处理
String reason = failure.reason();
}
}
如果版本冲突,则会抛出ElasticsearchException
IndexRequest request = new IndexRequest("posts")
.id("1")
.source("field", "value")
.setIfSeqNo(10L)
.setIfPrimaryTerm(20);
try {
IndexResponse response = client.index(request, RequestOptions.DEFAULT);
} catch(ElasticsearchException e) {
if (e.status() == RestStatus.CONFLICT) {
// 此处说明抛出了版本冲突异常
}
}
如果opType被设置为create,但是要新增的数据已经在索引中存在相同id的文档,也会抛出上述异常。
IndexRequest request = new IndexRequest("posts")
.id("1")
.source("field", "value")
.opType(DocWriteRequest.OpType.CREATE);
try {
IndexResponse response = client.index(request, RequestOptions.DEFAULT);
} catch(ElasticsearchException e) {
if (e.status() == RestStatus.CONFLICT) {
// 此处说明抛出了版本冲突异常
}
}
Get API 文档查询
使用GetRequest,可以使用SearchRequest取代该API。具体参考官方文档。
Get Source API 文档source字段查询
使用GetSourceRequest,可以使用SearchRequest中的SearchSourceBuilder的fetchSource方法取代。具体用法参考官方文档。
Exists API 文档是否存在查询
使用方式同Get API,也是用GetRequest。查询的文档存在,返回true,否则返回false。
因为exists()方法只返回boolean类型,因此推荐关闭获取_source字段及所有存储的字段这样会更轻量。
// 设置请求的索引和文档ID
GetRequest getRequest = new GetRequest(
"posts",
"1");
// 关闭获取_source字段
getRequest.fetchSourceContext(new FetchSourceContext(false));
// 关闭获取stored fields
getRequest.storedFields("_none_");
执行操作
// 同步
boolean exists = client.exists(getRequest, RequestOptions.DEFAULT);
// 异步,listener泛型为Boolean
client.existsAsync(getRequest, RequestOptions.DEFAULT, listener);
Delete API 删除文档
Delete Request
文档删除请求使用DeleteRequest,包括索引和文档ID两个参数
DeleteRequest request = new DeleteRequest(
"posts", // 索引
"1"); // 文档ID
可选参数
// 路由参数
request.routing("routing");
// 以TimeValue形式设置主分片超时时间
request.timeout(TimeValue.timeValueMinutes(2));
// 以String形式设置主分片超时时间
request.timeout("2m");
// 使用WriteRequest.RefreshPolicy实例设置刷新策略
request.setRefreshPolicy(WriteRequest.RefreshPolicy.WAIT_UNTIL);
// 使用String设置刷新策略
request.setRefreshPolicy("wait_for");
// 设置version
request.version(2);
// 设置version type
request.versionType(VersionType.EXTERNAL);
执行操作
// 同步
DeleteResponse deleteResponse = client.delete(request, RequestOptions.DEFAULT);
// 异步, ActionListener 泛型为DeleteResponse
client.deleteAsync(request, RequestOptions.DEFAULT, listener);
DeleteResponse删除结果
返回执行删除操作的基本信息
String index = deleteResponse.getIndex();
String id = deleteResponse.getId();
long version = deleteResponse.getVersion();
ReplicationResponse.ShardInfo shardInfo = deleteResponse.getShardInfo();
if (shardInfo.getTotal() != shardInfo.getSuccessful()) {
// 执行成功的分片数少于总分片数时,在此处处理
}
if (shardInfo.getFailed() > 0) {
for (ReplicationResponse.ShardInfo.Failure failure :
shardInfo.getFailures()) {
// 失败处理
String reason = failure.reason();
}
}
可以从结果中获取是否找到文档
DeleteRequest request = new DeleteRequest("posts", "does_not_exist");
DeleteResponse deleteResponse = client.delete(
request, RequestOptions.DEFAULT);
if (deleteResponse.getResult() == DocWriteResponse.Result.NOT_FOUND) {
// 没找到文档,执行相应处理
}
如果版本冲突,则抛出异常ElasticsearchException
try {
DeleteResponse deleteResponse = client.delete(
new DeleteRequest("posts", "1").setIfSeqNo(100).setIfPrimaryTerm(2),
RequestOptions.DEFAULT);
} catch (ElasticsearchException exception) {
if (exception.status() == RestStatus.CONFLICT) {
// 版本冲突异常处理
}
}
Update API 更新文档
Update Request
更新文档使用UpdateRequest,包括索引和文档ID两个参数。
UpdateRequest request = new UpdateRequest(
"posts", // 索引
"1"); // 文档ID
Update API 允许使用脚本更新或者更新部分文档信息。
Update with a script
// Script parameters provided as a Map of objects
Map<String, Object> parameters = singletonMap("count", 4);
// Create an inline script using the painless language and the previous parameters
Script inline = new Script(ScriptType.INLINE, "painless",
"ctx._source.field += params.count", parameters);
// Sets the script to the update request
request.script(inline);
或者使用stored script
// Reference to a script stored under the name increment-field in the painless language
Script stored = new Script(
ScriptType.STORED, null, "increment-field", parameters);
// Sets the script in the update request
request.script(stored);
Updates with a partial document
使用该方式时,会将需要更新的部分文档与现有文档合并
方式一 JSONString形式的部分文档更新
UpdateRequest request = new UpdateRequest("posts", "1");
String jsonString = "{" +
""updated":"2017-01-01"," +
""reason":"daily update"" +
"}";
// Partial document source provided as a String in JSON format
request.doc(jsonString, XContentType.JSON);
方式二 map形式的部分文档更新
Map<String, Object> jsonMap = new HashMap<>();
jsonMap.put("updated", new Date());
jsonMap.put("reason", "daily update");
// Partial document source provided as a Map which gets automatically converted to JSON format
UpdateRequest request = new UpdateRequest("posts", "1")
.doc(jsonMap);
方式三 XContentBuilder形式的部分文档更新
XContentBuilder builder = XContentFactory.jsonBuilder();
builder.startObject();
{
builder.timeField("updated", new Date());
builder.field("reason", "daily update");
}
builder.endObject();
// Partial document source provided as an XContentBuilder object, the Elasticsearch built-in helpers to generate JSON content
UpdateRequest request = new UpdateRequest("posts", "1")
.doc(builder);
方式三 key-pairs形式的部分文档更新
// Partial document source provided as Object key-pairs, which gets converted to JSON format
UpdateRequest request = new UpdateRequest("posts", "1")
.doc("updated", new Date(),
"reason", "daily update");
Upserts
如果需要更新的文档不存在,可以使用upsert方法插入新文档。
// Upsert document source provided as a String
String jsonString = "{"created":"2017-01-01"}";
request.upsert(jsonString, XContentType.JSON);
与上面的partial document更新一样,upsert方法也可以采用String
, Map
, XContentBuilder
或者Object
key-pairs方式。
可选参数
// 路由参数
request.routing("routing");
// 以TimeValue形式设置主分片超时时间
request.timeout(TimeValue.timeValueMinutes(2));
// 以String形式设置主分片超时时间
request.timeout("2m");
// 使用WriteRequest.RefreshPolicy实例设置刷新策略
request.setRefreshPolicy(WriteRequest.RefreshPolicy.WAIT_UNTIL);
// 使用String设置刷新策略
request.setRefreshPolicy("wait_for");
// 设置version
request.version(2);
// 设置version type
request.versionType(VersionType.EXTERNAL);
// 如果在执行更新时已经被其他操作修改,重新尝试的次数设置
request.retryOnConflict(3);
// 开启获取_source字段,默认关闭
request.fetchSource(true);
// 配置source包含的具体字段
String[] includes = new String[]{"updated", "r*"};
String[] excludes = Strings.EMPTY_ARRAY;
request.fetchSource(
new FetchSourceContext(true, includes, excludes));
// 配置source排除的具体字段
String[] includes = Strings.EMPTY_ARRAY;
String[] excludes = new String[]{"updated"};
request.fetchSource(
new FetchSourceContext(true, includes, excludes));
// ifSeqNo
request.setIfSeqNo(2L);
// ifPrimaryTerm
request.setIfPrimaryTerm(1L);
// 关闭noop 探测
request.detectNoop(false);
// 设置不管文档是否存在,脚本都被执行
request.scriptedUpsert(true);
// 设置如果要更新的文档不存在,则文档变为upsert文档
request.docAsUpsert(true);
// 设置更新操作执行前活动的分片副本数量
request.waitForActiveShards(2);
// 可以作为活跃分区副本的数量ActiveShardCount:取值为 ActiveShardCount.ALL, ActiveShardCount.ONE 或者 ActiveShardCount.DEFAULT (默认值)
request.waitForActiveShards(ActiveShardCount.ALL);
执行操作
// 同步
UpdateResponse updateResponse = client.update(request, RequestOptions.DEFAULT);
// 异步。listener的泛型为UpdateResponse
client.updateAsync(request, RequestOptions.DEFAULT, listener);
UpdateResponse更新结果
UpdateResponse获取更新操作的执行情况:
String index = updateResponse.getIndex();
String id = updateResponse.getId();
long version = updateResponse.getVersion();
if (updateResponse.getResult() == DocWriteResponse.Result.CREATED) {
// 首次创建或upsert
} else if (updateResponse.getResult() == DocWriteResponse.Result.UPDATED) {
// 文档被更新
} else if (updateResponse.getResult() == DocWriteResponse.Result.DELETED) {
// 文档被删除
} else if (updateResponse.getResult() == DocWriteResponse.Result.NOOP) {
// 未对已有文档造成影响
}
如果UpdateRequest允许通过fetchSource方法获取source,则UpdateResponse会返回更新文档的source信息:
// 以GetResult对象获取被更新的文档
GetResult result = updateResponse.getGetResult();
if (result.isExists()) {
// 以String形式获取被更新文档的source
String sourceAsString = result.sourceAsString();
// 以Map<String, Object>形式获取被更新文档的source
Map<String, Object> sourceAsMap = result.sourceAsMap();
// 以byte[]形式获取被更新文档的source
byte[] sourceAsBytes = result.source();
} else {
// 处理响应中没有source的情形(默认行为)
}
还可以在响应中检查分片失败信息:
ReplicationResponse.ShardInfo shardInfo = updateResponse.getShardInfo();
if (shardInfo.getTotal() != shardInfo.getSuccessful()) {
// 执行成功的分片数少于总分片数时,在此处处理
}
if (shardInfo.getFailed() > 0) {
for (ReplicationResponse.ShardInfo.Failure failure :
shardInfo.getFailures()) {
// 处理失败信息
String reason = failure.reason();
}
}
如果UpdateRequest请求一个不存在的文档,会返回404,ElasticsearchException会抛出:
UpdateRequest request = new UpdateRequest("posts", "does_not_exist")
.doc("field", "value");
try {
UpdateResponse updateResponse = client.update(
request, RequestOptions.DEFAULT);
} catch (ElasticsearchException e) {
if (e.status() == RestStatus.NOT_FOUND) {
// 处理由于文档不存在导致的异常
}
}
如果版本冲突,会抛出ElasticsearchException:
UpdateRequest request = new UpdateRequest("posts", "1")
.doc("field", "value")
.setIfSeqNo(101L)
.setIfPrimaryTerm(200L);
try {
UpdateResponse updateResponse = client.update(
request, RequestOptions.DEFAULT);
} catch(ElasticsearchException e) {
if (e.status() == RestStatus.CONFLICT) {
// 版本冲突导致异常
}
}
Bulk API 批量操作
实际项目中,批量操作更常用。
Java High Level REST Client提供了Bulk Processor结合BulkRequest使用。
Bulk Request
一个BulkRequest能够执行多个index/update/delete操作。
该请求至少需要有一个操作。
// 创建BulkRequest
BulkRequest request = new BulkRequest();
// 添加创建文档操作请求 IndexRequest
request.add(new IndexRequest("posts").id("1")
.source(XContentType.JSON,"field", "foo"));
// 添加第2个创建文档操作请求 IndexRequest
request.add(new IndexRequest("posts").id("2")
.source(XContentType.JSON,"field", "bar"));
// 添加第3个创建文档操作请求 IndexRequest
request.add(new IndexRequest("posts").id("3")
.source(XContentType.JSON,"field", "baz"));
注意,Bulk API 只支持JSON或SMILE编码格式,使用其他格式的文档会报错。
不同的操作可以添加到同一个BulkRequest。
BulkRequest request = new BulkRequest();
// 添加删除文档操作请求DeleteRequest
request.add(new DeleteRequest("posts", "3"));
// 添加更新文档操作请求UpdateRequest
request.add(new UpdateRequest("posts", "2")
.doc(XContentType.JSON,"other", "test"));
// 添加创建文档操作请求IndexRequst,使用SMILE格式
request.add(new IndexRequest("posts").id("4")
.source(XContentType.JSON,"field", "baz"));
可选参数
// 以TimeValue形式设置主分片超时时间
request.timeout(TimeValue.timeValueSeconds(1));
// 以String形式设置主分片超时时间
request.timeout("1s");
// 使用WriteRequest.RefreshPolicy实例设置刷新策略
request.setRefreshPolicy(WriteRequest.RefreshPolicy.WAIT_UNTIL);
// 使用String设置刷新策略
request.setRefreshPolicy("wait_for");
// 设置version
request.version(2);
// 设置version type
request.versionType(VersionType.EXTERNAL);
// 全局pipeline,适用于所有子请求,除非子请求覆写了pipeline
request.setPipeline("pipelineId");
// 设置index/update/delete操作执行前活动的分片副本数量
request.waitForActiveShards(2);
// 可以作为活跃分区副本的数量ActiveShardCount:取值为 ActiveShardCount.ALL, ActiveShardCount.ONE 或者 ActiveShardCount.DEFAULT (默认值)
request.waitForActiveShards(ActiveShardCount.ALL);
// 设置全局路由,适用于所有子请求
request.routing("routingId");
// 全局索引,适用于所有子请求,除非子请求单独设置了索引。该参数是@Nullable,且只有在BulkRequest创建时设定。
BulkRequest defaulted = new BulkRequest("posts");
执行操作
// 同步
BulkResponse bulkResponse = client.bulk(request, RequestOptions.DEFAULT);
// 异步。listener泛型BulkResponse
client.bulkAsync(request, RequestOptions.DEFAULT, listener);
BulkResponse批量执行结果
BulkResponse包含执行操作的信息,可以迭代获取:
// Iterate over the results of all operations
for (BulkItemResponse bulkItemResponse : bulkResponse) {
// Retrieve the response of the operation (successful or not), can be IndexResponse, UpdateResponse or DeleteResponse which can all be seen as DocWriteResponse instances
DocWriteResponse itemResponse = bulkItemResponse.getResponse();
switch (bulkItemResponse.getOpType()) {
case INDEX: // Handle the response of an index operation
case CREATE:
IndexResponse indexResponse = (IndexResponse) itemResponse;
break;
case UPDATE: // Handle the response of a update operation
UpdateResponse updateResponse = (UpdateResponse) itemResponse;
break;
case DELETE: // Handle the response of a delete operation
DeleteResponse deleteResponse = (DeleteResponse) itemResponse;
}
}
Bulk response提供了一个快捷检查是否有操作执行失败的方法:
// 至少有一个执行失败时,返回true
if (bulkResponse.hasFailures()) {
}
如果有执行失败的,则需要迭代获取错误,并处理:
for (BulkItemResponse bulkItemResponse : bulkResponse) {
// 判断操作是否失败
if (bulkItemResponse.isFailed()) {
// 如果失败,则获取失败信息
BulkItemResponse.Failure failure =
bulkItemResponse.getFailure();
}
}
Bulk Processor
BulkProcessor简化了Bulk API的使用。通过提供工具类,允许index/update/delete 操作添加到Processor中后,透明执行。
为了执行这些请求,BulkProcessor需要如下部分:
RestHighLevelClient:用于执行BulkRequest和获取结果BulkResponse
BulkProcessor.Listener:当一个BulkRequest执行失败或执行完成后调用listener
之后,BulkProcessor.builder可以用来创建一个新的BulkProcessor。
// Create the BulkProcessor.Listener
BulkProcessor.Listener listener = new BulkProcessor.Listener() {
@Override
public void beforeBulk(long executionId, BulkRequest request) {
// This method is called before each execution of a BulkRequest
}
@Override
public void afterBulk(long executionId, BulkRequest request,
BulkResponse response) {
// This method is called after each execution of a BulkRequest
}
@Override
public void afterBulk(long executionId, BulkRequest request,
Throwable failure) {
// This method is called when a BulkRequest failed
}
};
// Create the BulkProcessor by calling the build() method from the BulkProcessor.Builder. The RestHighLevelClient.bulkAsync() method will be used to execute the BulkRequest under the hood.
BulkProcessor bulkProcessor = BulkProcessor.builder(
(request, bulkListener) ->
client.bulkAsync(request, RequestOptions.DEFAULT, bulkListener),
listener).build();
BulkProcessor.Builder提供了配置BulkProcessor如何处理请求的方法:
BulkProcessor.Builder builder = BulkProcessor.builder(
(request, bulkListener) ->
client.bulkAsync(request, RequestOptions.DEFAULT, bulkListener),
listener);
// Set when to flush a new bulk request based on the number of actions currently added (defaults to 1000, use -1 to disable it)
builder.setBulkActions(500);
// Set when to flush a new bulk request based on the size of actions currently added (defaults to 5Mb, use -1 to disable it)
builder.setBulkSize(new ByteSizeValue(1L, ByteSizeUnit.MB));
// Set the number of concurrent requests allowed to be executed (default to 1, use 0 to only allow the execution of a single request)
builder.setConcurrentRequests(0);
// Set a flush interval flushing any BulkRequest pending if the interval passes (defaults to not set)
builder.setFlushInterval(TimeValue.timeValueSeconds(10L));
// Set a constant back off policy that initially waits for 1 second and retries up to 3 times. See BackoffPolicy.noBackoff(), BackoffPolicy.constantBackoff() and BackoffPolicy.exponentialBackoff() for more options.
builder.setBackoffPolicy(BackoffPolicy
.constantBackoff(TimeValue.timeValueSeconds(1L), 3));
创建完BulkProcessor后,可以向其中添加操作请求:
IndexRequest one = new IndexRequest("posts").id("1")
.source(XContentType.JSON, "title",
"In which order are my Elasticsearch queries executed?");
IndexRequest two = new IndexRequest("posts").id("2")
.source(XContentType.JSON, "title",
"Current status and upcoming changes in Elasticsearch");
IndexRequest three = new IndexRequest("posts").id("3")
.source(XContentType.JSON, "title",
"The Future of Federated Search in Elasticsearch");
bulkProcessor.add(one);
bulkProcessor.add(two);
bulkProcessor.add(three);
这些请求会被BulkProcessor执行,且每个bulk 请求后会调用 BulkProcessor.Listener。
该listener提供了处理BulkRequest 和BulkResponse的途径:
BulkProcessor.Listener listener = new BulkProcessor.Listener() {
@Override
public void beforeBulk(long executionId, BulkRequest request) {
// Called before each execution of a BulkRequest, this method allows to know the number of operations that are going to be executed within the BulkRequest
int numberOfActions = request.numberOfActions();
logger.debug("Executing bulk [{}] with {} requests",
executionId, numberOfActions);
}
@Override
public void afterBulk(long executionId, BulkRequest request,
BulkResponse response) {
// Called after each execution of a BulkRequest, this method allows to know if the BulkResponse contains errors
if (response.hasFailures()) {
logger.warn("Bulk [{}] executed with failures", executionId);
} else {
logger.debug("Bulk [{}] completed in {} milliseconds",
executionId, response.getTook().getMillis());
}
}
@Override
public void afterBulk(long executionId, BulkRequest request,
Throwable failure) {
// Called if the BulkRequest failed, this method allows to know the failure
logger.error("Failed to execute bulk", failure);
}
};
当所有请求添加到BulkProcessor后,它的实例需要使用两个可用的关闭方法的任一个关闭:
// 如果所有请求执行完成返回true,如果请求执行超时,则返回false
boolean terminated = bulkProcessor.awaitClose(30L, TimeUnit.SECONDS);
close()方法可以用来 立即关闭BulkProcessor:
bulkProcessor.close();
上述两个关闭方法会在关闭前刷新processor中已经添加的请求,且无法向procssor中添加新的请求。
Multi-Get API 批量获取
multiGet API可以并行执行多个Get API。
Reindex API 文档复制
ReindexRequest用于从一个或多个索引中复制文档到新的目标索引中。
Update By Query API批量更新文档
UpdateByQueryRequest
UpdateByQueryRequest用于更新一个索引中的多个文档。
一个最简单的UpdateByQueryRequest如下:
// 在一组索引上创建UpdateByQueryRequest
UpdateByQueryRequest request = new UpdateByQueryRequest("source1", "source2");
默认情况下版本冲突会中断UpdateByQueryRequest的执行,但是可以使用下面的设置,只进行计数
request.setConflicts("proceed");
可以通过添加一个query限制这些文档
// 只处理user字段值为kimchy的文档
request.setQuery(new TermQueryBuilder("user", "kimchy"));
可以通过设置maxDocs限制处理文档的最大数量
request.setMaxDocs(10);
默认情况下,UpdateByQueryRequest一批处理1000条文档,可以通过setBatchSize修改。
request.setBatchSize(100);
可以利用ingest 特性,指定一个pipeline
request.setPipeline("my_pipeline");
UpdateByQueryRequest支持使用脚本修改文档。
// setScript增加用户为kimchy的所有文档的likes字段值
request.setScript(
new Script(
ScriptType.INLINE, "painless",
"if (ctx._source.user == ‘kimchy‘) {ctx._source.likes++;}",
Collections.emptyMap()));
UpdateByQueryRequest可以通过setSlices使用sliced-scroll实现并行化。
request.setSlices(2);
UpdateByQueryRequest使用scroll参数来控制search context的生命周期。
request.setScroll(TimeValue.timeValueMinutes(10));
如果提供了路由,则路由会复制到scroll query中,用以限制匹配该路由值的分片。
request.setRouting("=cat");
可选参数
除了上面的配置,还有一些配置参数。
// 批量更新超时时间
request.setTimeout(TimeValue.timeValueMinutes(2));
// 调用更新操作后刷新索引
request.setRefresh(true);
// 设置索引选项
request.setIndicesOptions(IndicesOptions.LENIENT_EXPAND_OPEN);
执行操作
// 同步
BulkByScrollResponse bulkResponse =
client.updateByQuery(request, RequestOptions.DEFAULT);
// 异步,listener泛型为BulkByScrollResponse
client.updateByQueryAsync(request, RequestOptions.DEFAULT, listener);
UpdateByQueryResponse 批量更新结果
UpdateByQueryResponse提供了批量更新的基本信息,可以遍历获取。
// Get total time taken
TimeValue timeTaken = bulkResponse.getTook();
// Check if the request timed out
boolean timedOut = bulkResponse.isTimedOut();
// Get total number of docs processed
long totalDocs = bulkResponse.getTotal();
// Number of docs that were updated
long updatedDocs = bulkResponse.getUpdated();
// Number of docs that were deleted
long deletedDocs = bulkResponse.getDeleted();
// Number of batches that were executed
long batches = bulkResponse.getBatches();
// Number of skipped docs
long noops = bulkResponse.getNoops();
// Number of version conflicts
long versionConflicts = bulkResponse.getVersionConflicts();
// Number of times request had to retry bulk index operations
long bulkRetries = bulkResponse.getBulkRetries();
// Number of times request had to retry search operations
long searchRetries = bulkResponse.getSearchRetries();
// The total time this request has throttled itself not including the current throttle time if it is currently sleeping
TimeValue throttledMillis = bulkResponse.getStatus().getThrottled();
// Remaining delay of any current throttle sleep or 0 if not sleeping
TimeValue throttledUntilMillis =
bulkResponse.getStatus().getThrottledUntil();
// Failures during search phase
List<ScrollableHitSource.SearchFailure> searchFailures =
bulkResponse.getSearchFailures();
// Failures during bulk index operation
List<BulkItemResponse.Failure> bulkFailures =
bulkResponse.getBulkFailures();
Delete By Query Request批量删除文档
DeleteByQueryRequest
DeleteByQueryRequest用于删除一个索引中的多个文档。需要存在一个或多个索引。
最简单的DeleteByQueryRequest如下,删除一个索引中的所有文档。
DeleteByQueryRequest request =
new DeleteByQueryRequest("source1", "source2");
默认情况下版本冲突会中断DeleteByQueryRequest的执行,但是可以使用下面的设置,只进行计数
request.setConflicts("proceed");
可以通过添加一个query限制这些文档
// 只处理user字段值为kimchy的文档
request.setQuery(new TermQueryBuilder("user", "kimchy"));
可以通过设置maxDocs限制处理文档的最大数量
request.setMaxDocs(10);
默认情况下,DeleteByQueryRequest一批处理1000条文档,可以通过setBatchSize修改。
request.setBatchSize(100);
DeleteByQueryRequest可以通过setSlices使用sliced-scroll实现并行化。
request.setSlices(2);
UpdateByQueryRequest使用scroll参数来控制search context的生命周期。
request.setScroll(TimeValue.timeValueMinutes(10));
如果提供了路由,则路由会复制到scroll query中,用以限制匹配该路由值的分片。
request.setRouting("=cat");
可选参数
除了上面的配置,还有一些配置参数。
// 批量更新超时时间
request.setTimeout(TimeValue.timeValueMinutes(2));
// 调用更新操作后刷新索引
request.setRefresh(true);
// 设置索引选项
request.setIndicesOptions(IndicesOptions.LENIENT_EXPAND_OPEN);
执行操作
// 同步
BulkByScrollResponse bulkResponse =
client.deleteByQuery(request, RequestOptions.DEFAULT);
// 异步, listener泛型BulkByScrollResponse
client.deleteByQueryAsync(request, RequestOptions.DEFAULT, listener);
DeleteByQueryResponse批量删除结果
返回的DeleteByQueryResponse包含了批量删除的执行信息,可以遍历获取。
// Get total time taken
TimeValue timeTaken = bulkResponse.getTook();
// Check if the request timed out
boolean timedOut = bulkResponse.isTimedOut();
// Get total number of docs processed
long totalDocs = bulkResponse.getTotal();
// Number of docs that were deleted
long deletedDocs = bulkResponse.getDeleted();
// Number of batches that were executed
long batches = bulkResponse.getBatches();
// Number of skipped docs
long noops = bulkResponse.getNoops();
// Number of version conflicts
long versionConflicts = bulkResponse.getVersionConflicts();
// Number of times request had to retry bulk index operations
long bulkRetries = bulkResponse.getBulkRetries();
// Number of times request had to retry search operations
long searchRetries = bulkResponse.getSearchRetries();
// The total time this request has throttled itself not including the current throttle time if it is currently sleeping
TimeValue throttledMillis = bulkResponse.getStatus().getThrottled();
// Remaining delay of any current throttle sleep or 0 if not sleeping
TimeValue throttledUntilMillis =
bulkResponse.getStatus().getThrottledUntil();
// Failures during search phase
List<ScrollableHitSource.SearchFailure> searchFailures =
bulkResponse.getSearchFailures();
// Failures during bulk index operation
List<BulkItemResponse.Failure> bulkFailures =
bulkResponse.getBulkFailures();
Rethrottle API
Multi Term Vectors API
以上是关于ESJava High Level REST Client官方索引和文档操作指导的主要内容,如果未能解决你的问题,请参考以下文章
elasticsearch 7.7.0 最新版+Java High Level REST Client测试
Elasticsearch java api操作(Java High Level Rest Client)
Java High Level REST Client 使用地理位置查询
Elasticsearch High Level Rest Client 发起请求的过程分析