Java设计模式--设计模式七大原则

Posted trueAndFalse

tags:

篇首语:本文由小常识网(cha138.com)小编为大家整理,主要介绍了Java设计模式--设计模式七大原则相关的知识,希望对你有一定的参考价值。

设计模式的目的

  编写软件过程中,程序员面临着来自 耦合性,内聚性以及可维护性,可扩展性,重
 用性,灵活性 等多方面的挑战,设计模式是为了让程序(软件),具有更好
  1. 代码重用性 (即:相同功能的代码,不用多次编写)
  2. 可读性 (即:编程规范性, 便于其他程序员的阅读和理解)
  3. 可扩展性 (即:当需要增加新的功能时,非常的方便,称为可维护)
  4. 可靠性 (即:当我们增加新的功能后,对原来的功能没有影响)
  5.  使程序呈现高内聚,低耦合的特性
  分享金句:
    设计模式包含了面向对象的精髓,“懂了设计模式,你就懂了面向对象分析和设计(OOA/D)的精要”
    Scott Mayers 在其巨著《Effective C++》就曾经说过:C++老手和 C++新手的区别就是前者手背上有很多伤疤

设计模式七大原则

1) 单一职责原则

基本介绍

对类来说的,即一个类应该只负责一项职责。如类A负责两个不同职责:职责1,职责2。
当职责1需求变更而改变A时,可能造成职责2执行错误,所以需要将类A的粒度分解为A1,A2

应用实例

package com.atguigu.principle.singleresponsibility;

public class SingleResponsibility1 {

    public static void main(String[] args) {
        // TODO Auto-generated method stub
        Vehicle vehicle = new Vehicle();
        vehicle.run("摩托车");
        vehicle.run("汽车");
        vehicle.run("飞机");
    }

}

// 交通工具类
// 方式1
// 1. 在方式1 的run方法中,违反了单一职责原则
// 2. 解决的方案非常的简单,根据交通工具运行方法不同,分解成不同类即可
class Vehicle {
    public void run(String vehicle) {
        System.out.println(vehicle + " 在公路上运行....");
    }
}
SingleResponsibility1 传统方式
package com.atguigu.principle.singleresponsibility;

public class SingleResponsibility2 {

    public static void main(String[] args) {
        // TODO Auto-generated method stub
        RoadVehicle roadVehicle = new RoadVehicle();
        roadVehicle.run("摩托车");
        roadVehicle.run("汽车");
        
        AirVehicle airVehicle = new AirVehicle();
        
        airVehicle.run("飞机");
    }

}

//方案2的分析
//1. 遵守单一职责原则
//2. 但是这样做的改动很大,即将类分解,同时修改客户端
//3. 改进:直接修改Vehicle 类,改动的代码会比较少=>方案3

class RoadVehicle {
    public void run(String vehicle) {
        System.out.println(vehicle + "公路运行");
    }
}

class AirVehicle {
    public void run(String vehicle) {
        System.out.println(vehicle + "天空运行");
    }
}

class WaterVehicle {
    public void run(String vehicle) {
        System.out.println(vehicle + "水中运行");
    }
}
SingleResponsibility2 单一原则
package com.atguigu.principle.singleresponsibility;

public class SingleResponsibility3 {

    public static void main(String[] args) {
        // TODO Auto-generated method stub
        Vehicle2 vehicle2  = new Vehicle2();
        vehicle2.run("汽车");
        vehicle2.runWater("轮船");
        vehicle2.runAir("飞机");
    }

}


//方式3的分析
//1. 这种修改方法没有对原来的类做大的修改,只是增加方法
//2. 这里虽然没有在类这个级别上遵守单一职责原则,但是在方法级别上,仍然是遵守单一职责
class Vehicle2 {
    public void run(String vehicle) {
        //处理
        System.out.println(vehicle + " 在公路上运行...."); 
    }
    
    public void runAir(String vehicle) {
        System.out.println(vehicle + " 在天空上运行....");
    }
    
    public void runWater(String vehicle) {
        System.out.println(vehicle + " 在水中行....");
    }
    
    //方法2.
    //..
    //..
    
    //...
}
SingleResponsibility3

单一职责原则注意事项和细节

1) 降低类的复杂度,一个类只负责一项职责。
2) 提高类的可读性,可维护性
3) 降低变更引起的风险
4) 通常情况下,我们应当遵守单一职责原则,只有逻辑足够简单,才可以在代码级违
反单一职责原则;只有类中方法数量足够少,可以在方法级别保持单一职责原则

2) 接口隔离原则

基本介绍

1) 客户端不应该依赖它不需要的接口,即一个类对另一个类的依赖
应该建立在最小的接口上
 
2) 先看一张图:
 
 
3)类A通过接口Interface1依赖类B,类C通过接口Interface1依赖类D,如果接口
Interface1对于类A和类C来说不是最小接口,那么类B和类D必须去实现他们不需要的方法。
 
4)按隔离原则应当这样处理:
将接口Interface1拆分为独立的几个接口,类A和类C分别与他们需要的接口建立依赖关系。也就是采用接口隔离原则

应用实例

package com.atguigu.principle.segregation;

public class Segregation1 {

    public static void main(String[] args) {
        // TODO Auto-generated method stub

    }

}

//接口
interface Interface1 {
    void operation1();
    void operation2();
    void operation3();
    void operation4();
    void operation5();
}

class B implements Interface1 {
    public void operation1() {
        System.out.println("B 实现了 operation1");
    }
    
    public void operation2() {
        System.out.println("B 实现了 operation2");
    }
    public void operation3() {
        System.out.println("B 实现了 operation3");
    }
    public void operation4() {
        System.out.println("B 实现了 operation4");
    }
    public void operation5() {
        System.out.println("B 实现了 operation5");
    }
}

class D implements Interface1 {
    public void operation1() {
        System.out.println("D 实现了 operation1");
    }
    
    public void operation2() {
        System.out.println("D 实现了 operation2");
    }
    public void operation3() {
        System.out.println("D 实现了 operation3");
    }
    public void operation4() {
        System.out.println("D 实现了 operation4");
    }
    public void operation5() {
        System.out.println("D 实现了 operation5");
    }
}

class A { //A 类通过接口Interface1 依赖(使用) B类,但是只会用到1,2,3方法
    public void depend1(Interface1 i) {
        i.operation1();
    }
    public void depend2(Interface1 i) {
        i.operation2();
    }
    public void depend3(Interface1 i) {
        i.operation3();
    }
}
  
class C { //C 类通过接口Interface1 依赖(使用) D类,但是只会用到1,4,5方法
    public void depend1(Interface1 i) {
        i.operation1();
    }
    public void depend4(Interface1 i) {
        i.operation4();
    }
    public void depend5(Interface1 i) {
        i.operation5();
    }
}
传统方式:Segregation1
package com.atguigu.principle.segregation.improve;

public class Segregation1 {

    public static void main(String[] args) {
        // TODO Auto-generated method stub
        // 使用一把
        A a = new A();
        a.depend1(new B()); // A类通过接口去依赖B类
        a.depend2(new B());
        a.depend3(new B());

        C c = new C();

        c.depend1(new D()); // C类通过接口去依赖(使用)D类
        c.depend4(new D());
        c.depend5(new D());

    }

}

// 接口1
interface Interface1 {
    void operation1();

}

// 接口2
interface Interface2 {
    void operation2();

    void operation3();
}

// 接口3
interface Interface3 {
    void operation4();

    void operation5();
}

class B implements Interface1, Interface2 {
    public void operation1() {
        System.out.println("B 实现了 operation1");
    }

    public void operation2() {
        System.out.println("B 实现了 operation2");
    }

    public void operation3() {
        System.out.println("B 实现了 operation3");
    }

}

class D implements Interface1, Interface3 {
    public void operation1() {
        System.out.println("D 实现了 operation1");
    }

    public void operation4() {
        System.out.println("D 实现了 operation4");
    }

    public void operation5() {
        System.out.println("D 实现了 operation5");
    }
}

class A { // A 类通过接口Interface1,Interface2 依赖(使用) B类,但是只会用到1,2,3方法
    public void depend1(Interface1 i) {
        i.operation1();
    }

    public void depend2(Interface2 i) {
        i.operation2();
    }

    public void depend3(Interface2 i) {
        i.operation3();
    }
}

class C { // C 类通过接口Interface1,Interface3 依赖(使用) D类,但是只会用到1,4,5方法
    public void depend1(Interface1 i) {
        i.operation1();
    }

    public void depend4(Interface3 i) {
        i.operation4();
    }

    public void depend5(Interface3 i) {
        i.operation5();
    }
}
接口隔离后:Segregation1

应传统方法的问题和使用接口隔离原则改进

1) 类A通过接口Interface1依赖类B,类C通过接口Interface1依赖类D,如果接口Interface1对于类A和类C来说不是最小接口,那么类B和类D必须去实现他们不
需要的方法
 
2) 将接口Interface1拆分为独立的几个接口,类A和类C分别与他们需要的接口建立依赖关系。也就是采用接口隔离原则
 
3) 接口Interface1中出现的方法,根据实际情况拆分为三个接口4) 代码实现

3) 依赖倒转(倒置)原则

基本介绍

依赖倒转原则(Dependence Inversion Principle)是指:
1) 高层模块不应该依赖低层模块,二者都应该依赖其抽象
2) 抽象不应该依赖细节,细节应该依赖抽象
3) 依赖倒转(倒置)的中心思想是面向接口编程
4) 依赖倒转原则是基于这样的设计理念:相对于细节的多变性,抽象的东西要稳定的
多。以抽象为基础搭建的架构比以细节为基础的架构要稳定的多。在java中,抽象
指的是接口或抽象类,细节就是具体的实现类
5) 使用接口或抽象类的目的是制定好规范,而不涉及任何具体的操作,把展现细节的
任务交给他们的实现类去完成

应用实例

package com.atguigu.principle.inversion;

public class DependecyInversion {

    public static void main(String[] args) {
        Person person = new Person();
        person.receive(new Email());
    }

}


class Email {
    public String getInfo() {
        return "电子邮件信息: hello,world";
    }
}

//完成Person接收消息的功能
//方式1分析
//1. 简单,比较容易想到
//2. 如果我们获取的对象是 微信,短信等等,则新增类,同时Perons也要增加相应的接收方法
//3. 解决思路:引入一个抽象的接口IReceiver, 表示接收者, 这样Person类与接口IReceiver发生依赖
//   因为Email, WeiXin 等等属于接收的范围,他们各自实现IReceiver 接口就ok, 这样我们就符号依赖倒转原则
class Person {
    public void receive(Email email ) {
        System.out.println(email.getInfo());
    }
}
传统方式:DependecyInversion
package com.atguigu.principle.inversion.improve;

public class DependecyInversion {

    public static void main(String[] args) {
        //客户端无需改变
        Person person = new Person();
        person.receive(new Email());
        
        person.receive(new WeiXin());
    }

}

//定义接口
interface IReceiver {
    public String getInfo();
}

class Email implements IReceiver {
    public String getInfo() {
        return "电子邮件信息: hello,world";
    }
}

//增加微信
class WeiXin implements IReceiver {
    public String getInfo() {
        return "微信信息: hello,ok";
    }
}

//方式2
class Person {
    //这里我们是对接口的依赖
    public void receive(IReceiver receiver ) {
        System.out.println(receiver.getInfo());
    }
}
依赖倒置:DependecyInversion
package com.atguigu.principle.inversion.improve;

public class DependencyPass {

    public static void main(String[] args) {
        // TODO Auto-generated method stub
        ChangHong changHong = new ChangHong();
//        OpenAndClose openAndClose = new OpenAndClose();
//        openAndClose.open(changHong);
        
        //通过构造器进行依赖传递
//        OpenAndClose openAndClose = new OpenAndClose(changHong);
//        openAndClose.open();
        //通过setter方法进行依赖传递
        OpenAndClose openAndClose = new OpenAndClose();
        openAndClose.setTv(changHong);
        openAndClose.open();

    }

}

// 方式1: 通过接口传递实现依赖
// 开关的接口
// interface IOpenAndClose {
// public void open(ITV tv); //抽象方法,接收接口
// }
//
// interface ITV { //ITV接口
// public void play();
// }
// 
// class ChangHong implements ITV {
//
//    @Override
//    public void play() {
//        // TODO Auto-generated method stub
//        System.out.println("长虹电视机,打开");
//    }
//     
// }
//// 实现接口
// class OpenAndClose implements IOpenAndClose{
// public void open(ITV tv){
// tv.play();
// }
// }

// 方式2: 通过构造方法依赖传递
// interface IOpenAndClose {
// public void open(); //抽象方法
// }
// interface ITV { //ITV接口
// public void play();
// }
// class OpenAndClose implements IOpenAndClose{
// public ITV tv; //成员
// public OpenAndClose(ITV tv){ //构造器
// this.tv = tv;
// }
// public void open(){
// this.tv.play();
// }
// }


// 方式3 , 通过setter方法传递
interface IOpenAndClose {
    public void open(); // 抽象方法

    public void setTv(ITV tv);
}

interface ITV { // ITV接口
    public void play();
}

class OpenAndClose implements IOpenAndClose {
    private ITV tv;

    public void setTv(ITV tv) {
        this.tv = tv;
    }

    public void open() {
        this.tv.play();
    }
}

class ChangHong implements ITV {

    @Override
    public void play() {
        // TODO Auto-generated method stub
        System.out.println("长虹电视机,打开");
    }
     
}
依赖倒置3种方式:DependencyPass

依赖关系传递的三种方式和应用案例

1) 接口传递
public class Dependency {
    public static void main(String[] args) {
        InterfaceBImpl inB = new InterfaceBImpl();
        InterfaceAImpl inA = new InterfaceAImpl();
        inA.methodA(inB);
    }
}
 
interface InterfaceA{
    public void methodA(InterfaceB b);
}
 
interface InterfaceB{
    public void methodB();
}
 
class  InterfaceBImpl implements InterfaceB{
    @Override
    public void methodB() {
        System.out.println("我是接口B的方法");
 
    }
}
 
class InterfaceAImpl implements InterfaceA{
    @Override
    public void methodA(InterfaceB b) {
        b.methodB();
    }
}
2) 构造方法传递
public class Dependency {
    public static void main(String[] args) {
        InterfaceBImpl inB = new InterfaceBImpl();
        InterfaceAImpl inA = new InterfaceAImpl(inB);
        inA.methodA();
    }
}
 
interface InterfaceA{
    public void methodA();
}
 
interface InterfaceB{
    public void methodB();
}
 
class  InterfaceBImpl implements InterfaceB{
    @Override
    public void methodB() {
        System.out.println("我是接口B的方法");
 
    }
}
 
class InterfaceAImpl implements InterfaceA{
    public InterfaceB b;
    public InterfaceAImpl(InterfaceB b){
        this.b = b;
    }
    @Override
    public void methodA() {
        this.b.methodB();
    }
}
3) setter方式传递
public class Dependency02 {
    public static void main(String[] args) {
        InterfaceAImpl inA = new InterfaceAImpl();
        InterfaceBImpl inB = new InterfaceBImpl();
        inA.setInterfaceB(inB);
        inA.methodA();
    }
}
 
interface InterfaceA{
    public void methodA();
    public void setInterfaceB(InterfaceB b);
}
 
interface InterfaceB{
    public void methodB();
}
 
class InterfaceAImpl implements InterfaceA{
    private InterfaceB b;
 
    @Override
    public void setInterfaceB(InterfaceB b) {
        this.b = b;
    }
 
    @Override
    public void methodA() {
        this.b.methodB();
    }
 
}
 
class InterfaceBImpl implements InterfaceB{
    @Override
    public void methodB() {
        System.out.println("我是接口B的方法");
    }
}

 

//使用框架的自动注入之后,是这个样子的: 
public
class InterfaceAImpl implements InterfaceA{ @Autowired protected InterfaceB interfaceB; /* . . . */ }

 

依赖倒转原则的注意事项和细节

1) 低层模块尽量都要有抽象类或接口,或者两者都有,程序稳定性更好.
2) 变量的声明类型尽量是抽象类或接口, 这样我们的变量引用和实际对象间,就存在一个缓冲层,利于程序扩展和优化
3) 继承时遵循里氏替换原则 

4) 里氏替换原则

OO中的继承性的思考和说明

1) 继承包含这样一层含义:父类中凡是已经实现好的方法,实际上是在设定规范和契约,虽然它不强制要求所有的子类必须遵循这些契约,但是如果子类对这些已经实现的方法任意修改,就会对整个继承体系造成破坏。
2) 继承在给程序设计带来便利的同时,也带来了弊端。比如使用继承会给程序带来侵入性,程序的可移植性降低,增加对象间的耦合性,如果一个类被其他的类所继承,则当这个类需要修改时,必须考虑到所有的子类,并且父类修改后,所有涉及到子
类的功能都有可能产生故障
3) 问题提出:在编程中,如何正确的使用继承? => 里氏替换原则

基本介绍

1) 里氏替换原则(Liskov Substitution Principle)在1988年,由麻省理工学院的以为姓里
的女士提出的。
2) 如果对每个类型为T1的对象o1,都有类型为T2的对象o2,使得以T1定义的所有程序P在所有的对象o1都代换成o2时,程序P的行为没有发生变化,那么类型T2是类型T1的子类型。
换句话说,所有引用基类的地方必须能透明地使用其子类的对象。
3) 在使用继承时,遵循里氏替换原则,在子类中尽量不要重写父类的方法
4) 里氏替换原则告诉我们,继承实际上让两个类耦合性增强了,在适当的情况下,可
以通过聚合,组合,依赖 来解决问题。.
一个程序引出的问题和思考
该看个程序, 思考下问题和解决思路 
package com.atguigu.principle.liskov;

public class Liskov {

    public static void main(String[] args) {
        // TODO Auto-generated method stub
        A a = new A();
        System.out.println("11-3=" + a.func1(11, 3));
        System.out.println("1-8=" + a.func1(1, 8));

        System.out.println("-----------------------");
        B b = new B();
        System.out.println("11-3=" + b.func1(11, 3));//这里本意是求出11-3
        System.out.println("1-8=" + b.func1(1, 8));// 1-8
        System.out.println("11+3+9=" + b.func2(11, 3));
        
        

    }

}

// A类
class A {
    // 返回两个数的差
    public int func1(int num1, int num2) {
        return num1 - num2;
    }
}

// B类继承了A
// 增加了一个新功能:完成两个数相加,然后和9求和
class B extends A {
    //这里,重写了A类的方法, 可能是无意识
    public int func1(int a, int b) {
        return a + b;
    }

    public int func2(int a, int b) {
        return func1(a, b) + 9;
    }
}
传统方式 :Liskov

重写的父类方法,遵循里氏替换原则,在子类中尽量不要重写父类的方法

package com.atguigu.principle.liskov.improve;

public class Liskov {

    public static void main(String[] args) {
        // TODO Auto-generated method stub
        A a = new A();
        System.out.println("11-3=" + a.func1(11, 3));
        System.out.println("1-8=" + a.func1(1, 8));

        System.out.println("-----------------------");
        B b = new B();
        //因为B类不再继承A类,因此调用者,不会

以上是关于Java设计模式--设计模式七大原则的主要内容,如果未能解决你的问题,请参考以下文章

Day305.设计模式七大原则 -Java设计模式

java七大设计原则

GOF 的23种JAVA常用设计模式总结 03 面向对象七大设计原则

图解Java设计模式之设计模式七大原则

设计模式第一篇:概述耦合UML七大原则,详细分析总结(基于Java)

Java设计模式六大原则或者说七大原则