模电书上说双输入双输出的长尾式差分放大电路的负载RL相当于一边为RL/2,然后尾巴E端相当于接地?
Posted
tags:
篇首语:本文由小常识网(cha138.com)小编为大家整理,主要介绍了模电书上说双输入双输出的长尾式差分放大电路的负载RL相当于一边为RL/2,然后尾巴E端相当于接地?相关的知识,希望对你有一定的参考价值。
不太明白为什么E点为交流零电位?书上说是E点的电位保持不变相当于接“地”。这句话怎么理解,明明就是E通过Re和-vcc相连的,而且E是在两个对称的三极管的发射极并联后通过RE与-vcc相连,E点的点位应该等于Re两端的电压加上-vcc吧!
请注意“交流零电位”的“交流”一词,-Vcc是直流电压,没有交流电压,就是交流零电位,同样因为输入对称差动,因此Re上没有交流电流,交流电压当然也是0,“应该等于Re两端的电压加上-vcc吧”这句话倒不错,但是0+0还是等于0. 参考技术A 关于rl/2这样理解.画出交流通路可以看到双端输出时RL和2个RC并联.so...... 参考技术B 画出交流的通路,可以得到在电阻Re上是没有电流通过的追答差模信号才是.共模信号还是有电流的
嗯嗯是的
参考技术C 电流一个是正一个是负.抵消了差分放大电路的CMRR与输入电阻分析
分析了经典差分放大电路的共模抑制比CMRR与输入电阻RIN
1.经典差分放大电路
基于运放的经典差分放大电路在各模电教材中均能找到,利用分离电阻和运算放大器实现,如图1所示为一种差分放大电路:
图1 经典差分电路
(1)理想状态下的分析
首先将OP1177看作理想运放,利用虚短、虚断的原理,可以得到:
VP=V2*R4/(R3+R4)---------------------(1)
(V1-VN)/R1=(VN-VOUT)/R2------------(2)
VN=VP-------------------------------------(3)
整理式(1)~(3),可以得到:
VOUT=(R1+R2)*R4/(R1*(R3+R4))*V2-V1*R2/R1------(4)
当R4/R3=R2/R1的时候:
VOUT=(R2/R1)(V2-V1)------------------(5)
式(5)表示在理想状态下,VOUT输出的信号为输入信号的差模输出,并能完全抑制共模信号,并能实现差模信号的放大。
(2)实际状态分析
为了便于分析,对于两路输入信号V2、V1,假设:
K1=VDEF=V2-V1------------------------(6)
K2=VCOM=(V2+V1)/2------------------(7)
其中VDEF表示差模输入信号,VCOM表示共模输入信号,为了方便计算,用系数K1、K2分别表示。
由式(6)、(7)整理得到:
V2=(2*K2+k1)/2--------------------------(8)
V1=(2*k2-k1)/2---------------------------(9)
将式(8)~(9)代入式(4)中,可以得到:
VOUT={((R1+R2)*R4+R2*(R3+R4))/(2*R1(R3+R4))}*K1+{(R1+R2)*R4-R2*(R3+R4)/(R1*(R3+R4))}*K2
=A_DM*K1+A_CM*K2
=A_DM*(V2-V1)+A_CM*((V2+V1)/2)--------------------------(10)
式(10)表示的含义是VOUT输出信号中,将差模输入信号V2-V1放大了A_DM倍,将共模信号(V2+V1)/2)放大了A_CM倍。
差模放大倍数A_DM表示为:
A_DM=(R1+R2)*R4+R2*(R3+R4))/(2*R1(R3+R4))-----------------(11)
共模放大倍数A_CM表示为:
A_CM=(R1+R2)*R4-R2*(R3+R4)/(R1*(R3+R4))--------------------(12)
则共模抑制比CMRR可以表示为:
CMRR=|A_DM/A_CM|=|(R1*R4+2*R2*R4+R2*R3)/(R1*R4-R2*R3)|-----------(13)
式(13)表示当R4/R3=R2/R1的时候,差分电路的共模抑制比CMRR一定会达到无穷大,此时的输出信号VOUT中将不再包含任何的共模信号。
图2 OP1177的DATASHEET截图
图2所示为在OP1177中出现的对CMRR函数对R1求偏导的结果,但我经过了数次推导之后,得到的结果如下:
δCMRR/δR1=-(R2*R3*R4+R2*R4*R4)/(R4R1-R2R3)2 ---------------(14)
式(14)是否成立????
(PS:
LT公司的LT5400高精度匹配电阻具有提高差分式电路CMRR的作用,详见其DATASHEET以及 DESIGN NOTE 1023,上面有关于几种差分电路的CMRR分析,以及考虑了运放的CMRR,以及设计实例,值得借鉴。
http://123.183.218.77/201205/0fe1d6014e87dcd8328598fac521d4fc.pdf
)
(3)差分放大电路的输入电阻分析
图3经典差分电路输入电阻分析
同时假设以下条件成立:
(1)运放理想
(2)电阻匹配,设R1=R2=R3=R4=10KΩ
设RIN_V2、RIN_V1分别为电路中,从V2端和V1端看进去的输入电阻。
如图3所示,V2端的输入电阻比较简单,可以直接看出RIN_V2=R3+R4,由于运放的3端没有电流进入,因此可以得到:
RIN_V2=R3+R4
=20KΩ------------------------------------------------------------------(15)
下面重点分析RIN_V1是如何得到的:
假设在V1端加入信号源V1,在V1的输入端产生了电流I,则理论上来说,RIN_V1可以表示为:
RIN_V1=U/I---------------------------------------------------------------------(16)
从图3中可以得到:
I=(U-VN)/R1---------------------------------------------------------------------(17)
而VN=VP=V2*R4/(R3+R4)-----------------------------------------------------(18)
由式(16)~(18)可以得到:
RIN_V1=V1*(R3+R4)*R1/(V1*R3+V1*R4-V2*R4)-------------------------(19)
代入式(8)~(9)并整理,得到:
RIN_V1=(2*K2-K1(R3+R4)*R1)/((2*K2-K1)(R3+R4)-(2*K2+K1)R4)----(20)
K1=V2-V1-------------------VCOM两组输入信号之间的差模信号
K2=(V2+V1)/2--------------VDEF表示两组信号之间的共模信号
从式(20)可以看出,影响RIN_V1取值大小与电阻值、差模信号VDEF、共模信号VCOM的大小相关。
现考虑一种简单的情况,设共模信号VOCM为零,即K2=0。
带入式(20)中,可以得到:
RIN_V1=K1*(R3+R4)*R1/(K1(R3+R4)+K1R4)
=(R3+R4)*R1/(R3+2*R4)
=6.666KΩ---------------------------------------------------------------(21)
总结:
(1)由运放和分离电阻组成的差分电路的性能与运放、电阻匹配度等有关,在实际设计的时候需要考虑各方面因素。
(2)差分放大电路的两个输入端的输入电阻值不一致,影响差分放大电路的性能。
正是由于经典差分放大电路的缺点,才有了性能更好的差分放大器、仪表放大器等出现。
2016-12-29
21:21:52
联系邮箱:
leejiac_jn@163.com
以上是关于模电书上说双输入双输出的长尾式差分放大电路的负载RL相当于一边为RL/2,然后尾巴E端相当于接地?的主要内容,如果未能解决你的问题,请参考以下文章