干了这杯Java之HashMap

Posted 阿克西斯教成员污米饭

tags:

篇首语:本文由小常识网(cha138.com)小编为大家整理,主要介绍了干了这杯Java之HashMap相关的知识,希望对你有一定的参考价值。

类:

public class HashMap<K,V> extends AbstractMap<K,V>
    implements Map<K,V>, Cloneable, Serializable
  • 继承自AbstractMap 实现了Map,Cloneable,Serializable接口
  • 可以被序列化
  • 可以被Clone
//默认初始容量为16
static final int DEFAULT_INITIAL_CAPACITY = 1 << 4; // aka 16
//最大容量
static final int MAXIMUM_CAPACITY = 1 << 30
//默认扩容因子
static final float DEFAULT_LOAD_FACTOR = 0.75f
//红黑树转链表的阀值
static final int TREEIFY_THRESHOLD = 8;
//链表转红黑树阀值
static final int UNTREEIFY_THRESHOLD = 6;
//存储方式由链表转成红黑树的容量的最小阈值
static final int MIN_TREEIFY_CAPACITY = 64;

初始化

Map<String, Object> map = new HashMap<>();

public HashMap(int initialCapacity, float loadFactor) {
    if (initialCapacity < 0)
        throw new IllegalArgumentException("Illegal initial capacity: " + initialCapacity);
    if (initialCapacity > MAXIMUM_CAPACITY)
        initialCapacity = MAXIMUM_CAPACITY;
    if (loadFactor <= 0 || Float.isNaN(loadFactor))
        throw new IllegalArgumentException("Illegal load factor: " + loadFactor);
    this.loadFactor = loadFactor;
    this.threshold = tableSizeFor(initialCapacity);
}
  • new HashMap<>()的时候,会进入HashMap(int initialCapacity, float loadFactor)方法
  • initialCapacity为0xB
  • loadFactor默认为0.75
  • 第一步判断initialCapacity的值是不是小于0或大于1 << 30,第二步判断loadFactor是不是大于0和是否为浮点数,第三步设置实例的loadFactor为0.75,第四步设置容量为16

tableSizeFor

//返回大于或等于cap且为2的幂的数值
static final int tableSizeFor(int cap) {
    int n = cap - 1;
    n |= n >>> 1;
    n |= n >>> 2;
    n |= n >>> 4;
    n |= n >>> 8;
    n |= n >>> 16;
    return (n < 0) ? 1 : (n >= MAXIMUM_CAPACITY) ? MAXIMUM_CAPACITY : n + 1;
}
  • cap-1:如果cap不减去1,cap=2的幂时,结果为cap的2倍,不符合预期

hash方法

static final int hash(Object key) {
    int h;
    return (key == null) ? 0 : (h = key.hashCode()) ^ (h >>> 16);
}
  • hashCode的高位16bit与低16bit参与异或运算
  • null放在第0位

Node对象

put方法

public V put(K key, V value) {
    return putVal(hash(key), key, value, false, true);
}
final V putVal(int hash, K key, V value, boolean onlyIfAbsent,
                   boolean evict) {
    Node<K,V>[] tab; Node<K,V> p; int n, i;
    if ((tab = table) == null || (n = tab.length) == 0)
        //扩容,第一次扩容长度16
        n = (tab = resize()).length;
    //(n - 1) & hash的长度必定在0-n之间 
    //(n - 1) & hash等于hash % n,与运算比取模快
    //n - 1的2进制为01111...,N为2的次方
    if ((p = tab[i = (n - 1) & hash]) == null)
        tab[i] = newNode(hash, key, value, null);
    else {
        Node<K,V> e; K k;
        //hash和equals或=相同时,替换
        if (p.hash == hash &&
            ((k = p.key) == key || (key != null && key.equals(k))))
            e = p;
        else if (p instanceof TreeNode)//节点为树节点的时候,在红黑树上添加
            e = ((TreeNode<K,V>)p).putTreeVal(this, tab, hash, key, value);
        else {
            //链表
            for (int binCount = 0; ; ++binCount) {
                //添加在链表末尾
                if ((e = p.next) == null) {
                    p.next = newNode(hash, key, value, null);
                    //当binCount>=7的时候转换为红黑树
                    if (binCount >= TREEIFY_THRESHOLD - 1) // -1 for 1st
                        treeifyBin(tab, hash);
                    break;
                }
                //已经存在
                if (e.hash == hash &&
                    ((k = e.key) == key || (key != null && key.equals(k))))
                    break;
                //下一个对象
                p = e;
            }
        }
        //已经存在key
        if (e != null) {
            V oldValue = e.value;
            if (!onlyIfAbsent || oldValue == null)
                e.value = value;
            afterNodeAccess(e);
            return oldValue;
        }
    }
    ++modCount;
    //扩容
    if (++size > threshold)
        resize();
    afterNodeInsertion(evict);
    return null;
}
  • 取模 x % 2^n == x & (2^n - 1)

扩容

final Node<K,V>[] resize() {
    Node<K,V>[] oldTab = table;
    int oldCap = (oldTab == null) ? 0 : oldTab.length;
    int oldThr = threshold;
    int newCap, newThr = 0;
    if (oldCap > 0) {
        if (oldCap >= MAXIMUM_CAPACITY) {
            threshold = Integer.MAX_VALUE;
            return oldTab;
        }
        else if ((newCap = oldCap << 1) < MAXIMUM_CAPACITY &&
                 oldCap >= DEFAULT_INITIAL_CAPACITY)
            newThr = oldThr << 1; // double threshold
    }
    else if (oldThr > 0) // initial capacity was placed in threshold
        newCap = oldThr;
    else {               // zero initial threshold signifies using defaults
        newCap = DEFAULT_INITIAL_CAPACITY;
        newThr = (int)(DEFAULT_LOAD_FACTOR * DEFAULT_INITIAL_CAPACITY);
    }
    if (newThr == 0) {
        float ft = (float)newCap * loadFactor;
        newThr = (newCap < MAXIMUM_CAPACITY && ft < (float)MAXIMUM_CAPACITY ?
                  (int)ft : Integer.MAX_VALUE);
    }
    threshold = newThr;
    @SuppressWarnings({"rawtypes","unchecked"})
        Node<K,V>[] newTab = (Node<K,V>[])new Node[newCap];
    table = newTab;
    if (oldTab != null) {
        for (int j = 0; j < oldCap; ++j) {
            Node<K,V> e;
            if ((e = oldTab[j]) != null) {
                oldTab[j] = null;
                if (e.next == null)
                    newTab[e.hash & (newCap - 1)] = e;
                else if (e instanceof TreeNode)
                    ((TreeNode<K,V>)e).split(this, newTab, j, oldCap);
                else { // preserve order
                    Node<K,V> loHead = null, loTail = null;
                    Node<K,V> hiHead = null, hiTail = null;
                    Node<K,V> next;
                    do {
                        next = e.next;
                        if ((e.hash & oldCap) == 0) {
                            if (loTail == null)
                                loHead = e;
                            else
                                loTail.next = e;
                            loTail = e;
                        }
                        else {
                            if (hiTail == null)
                                hiHead = e;
                            else
                                hiTail.next = e;
                            hiTail = e;
                        }
                    } while ((e = next) != null);
                    if (loTail != null) {
                        loTail.next = null;
                        newTab[j] = loHead;
                    }
                    if (hiTail != null) {
                        hiTail.next = null;
                        newTab[j + oldCap] = hiHead;
                    }
                }
            }
        }
    }
    return newTab;
}

以上是关于干了这杯Java之HashMap的主要内容,如果未能解决你的问题,请参考以下文章

“短命”魔咒被打破,网红食品正走向“经典”?

JDK源码阅读之 HashMap

图像分类——来来来,干了这碗EfficientNet实战(Pytorch)

来,干了这碗鸡汤

java源码之HashMap和HashTable的异同

java集合系列之HashMap源码