SPSS—描述性统计分析—列联表
Posted
tags:
篇首语:本文由小常识网(cha138.com)小编为大家整理,主要介绍了SPSS—描述性统计分析—列联表相关的知识,希望对你有一定的参考价值。
什么是列联表列联表又称交互分类表,所谓交互分类,是指同时依据两个变量的值,将所研究的个案分类。交互分类的目的是将两变量分组,然后比
参考技术A 什么是列联表列联表又称交互分类表,所谓交互分类,是指同时依据两个变量的值,将所研究的个案分类。交互分类的目的是将两变量分组,然后比较各组的分布状况,以寻找变量间的关系。
这里是按两个变量交叉分类的,该列联表称为两维列联表,若按3个变量交叉分类,所得的列联表称为3维列联表,依次类推。3维及以上的列联表通常称为“多维列联表”或“高维列联表”,而一维列联表就是频数分布表。
列联表的结构
二维列联表
r * c 列联表
观察值的分布
百分比分布
期望频数的分布
假设检验
独立性检验
假设观察频数与期望频数没有差别,而统计量χ2值表示二者间的偏离程度。
相关系数
ψ相关系数
皮尔逊定义的列联系数
V相关系数
Fisher精确检验
卡方统计量是近似的,而Fisher精确检验使用的是超几何分布。
相对危险度(Relative Risk, RR)
参考下面的SPSS实例
优势比(Odds Ratio, OR)
参考下面的SPSS实例
Kappa一致性检验
在数据分析中,比较两种预测方法预测结果的一致性用到Kappa检验。
配对χ2检验
通过Kappa检验,解决了两种测量间究竟有无关联的问题,但是通过列联表的观察,发现两位顾问的评价是否不太一致,这种假设又如何来加以分析呢?
McNemar配对χ2检验 就是经典的配对检验,专门用于解决这类问题。
分层χ2检验
分层χ2检验是把研究对象分解成不同层次,按各层对象来进行行变量与列变量的独立性研究。Statistics中Cochran’s and Mantel-Haenszel statistics会自动给出结果。
分层χ2检验是一种很好的控制其他因素的方法,使分析者能得到更准确的结果。如果数据量足够大 ,还可以引入更多的分层因素加以控制。 但是,和SAS中的CMH χ2不同,SPSS提供的CMH χ2检验只能进行二分类变量的检验,而不能进行多分类变量的检验。
检验比较
χ2检验
假设观察频数与期望频数没有差别,而统计量χ2值表示二者间的偏离程度。
卡方检验方法的适用条件
关联程度的度量
χ2检验从定性的角度分析是否存在相关行,而各种关联指标(相对危险度RR与优势比OR)从定量的角度分析相关的程度如何。
Kappa一致性检验与配对χ2检验
Kappa一致性检验对两种方法结果的一致程度进行评价,而配对χ2检验则用于分析两种分类方法的分类结果是否有差异。
分层χ2检验
分层χ2检验是把研究对象分解成不同层次,按各层对象来进行行变量与列变量的独立性研究。Statistics中Cochran’s and Mantel-Haenszel statistics会自动给出结果。
SPSS分析
菜单
Analyze -> Descriptive Statistics -> Crosstabs
实例一:卡方检验和风险评估
数据集(site.sav)
某公司实行数据库营销,其杂志销售部每个月向数据库中的人们发送征订邮件,但是回应率极低。他们希望找到一种好的方法来定位潜在的客户,只向这些客户发放邮件,从而节省人力物力。数据库中的资料包括:个人一般信息(年龄、性别、婚姻状况、收入、受教育水平及是否退休等),个人行为特征(主要交通工具、有无手机、呼机、电视、CD及是否订阅报纸)。另外,在发送邮件后,还有一个变量也加入到了数据库中:是否对邮件进行回应,即是否在邮件的提示性进行杂志购买。经研究发现,报纸订阅与邮件发送有相关性。该部门经理想了解报纸订阅者回应邮件的概率是非订阅者的几倍。
参数设置
统计量
结果分析
交叉制表
列联表分析表明,并没有太多人对杂志的邮件做出回应,但是其中订阅人占了较大比例。
卡方检验
p值为0.000,故认为订阅报纸与邮件回应是相关的。那么报纸订阅者的回应概率是未订阅者的多少倍呢?通过计算RR来解决。
风险估计
对于报纸订阅者而言,邮件响应的相对危险度是其回应概率与非报纸订阅者的回应概率的比值,其估计值是(380/2768) / (299/3632) = 13.7% / 8.2%=1.668,表明报纸订阅者对邮件的响应概率是非报纸订阅者的1.668倍。 或者说报纸订阅者对邮件的无响应的概率是非报纸订阅者的0.94倍。
而优势比即一个事件的Odds Ratio是它发生的概率除以不发生的概率
实例二:Kappa一致性检验和配对卡方检验
数据集(site.sav)
某公司期望扩展业务,增开几家分店,但对开店地址不太确定。于是选了20个地址,请两位资深顾问分别对20个地址作了一个评价,把它们评为好、中、差三个等级,以便确定应对哪些地址进行更进一步调查,那么这两位资深顾问的评价结果是否一致。
参数设置
统计量
结果分析
交叉制表
Kappa一致性检验
Kappa检验的原假设:Kappa=0,即两者完全无关。结果显示Kappa=0.478,P<0.05,拒绝原假设,认为两位顾问的评价结果存在一致性。
配对卡方检验
Kappa一致性检验对两种方法结果的一致程度进行评价,而配对χ2检验则用于分析两种分类方法的分类结果是否有差异。
此处原假设:两顾问的评价结果无差别,而p=0.072>0.05,故接受原假设,认为基本上相同
实例三:分层卡方检验
数据集(cmh.sav)
某零售连锁店对3家分店的客户满意度进行了调查,数据见cmh.sav,其中一项指标是在购物时是否经常向店员寻求帮助,现希望分析寻求帮助与性别有无联系。
统计结果
未分层的卡方检验
将gender和contact分别作为行变量和列变量,并做χ2检验,p<0.05,认为两者间有联系。
因为每家分店的结果可能不一样,上面的卡方检验收到分店因素的影响可能不准确,需要根据分店进行分层统计。
但是分层因素在几个组之间的分布不均,既可能削弱了原本存在的行变量与列变量间的关系,也可能使得原本不存在关系的两个变量关系呈现统计学显著性。
按分店分层卡方检验
可以看到分店的卡方检验并无显著性(p > 0.05),说明每个分店的寻求帮助与性别之间没有强关联。
但是,由于分层后样本量大大减小,这究竟是因为检验效能不足导致的无差异,还是真的无差异?
为此可以使用Cochran’s and Mantel-Haenszel χ2检验来分析。这种方法可以在考虑了分层因素的影响后给出检验结果。
Cochran’s and Mantel-Haenszel χ2检验
首先给出的是层间差异的检验,即考察不同层间gender与contact的联系是否相同。
原假设H0: 分店之间的联系是相同的。
p = 0.638说明,在不同分店层间, gender与contact的联系是相同的。
调整了分层因素作用后的综合OR值=0.636,即去除了不同分店的混杂效应后,和女性相比,男性顾客寻求帮助的优势比为0.636,或者说更不容易寻求帮助。
如何使用spss进行交叉列联表分析
1、首先我们打开之前导入的spps文件。
2、然后我们选择变量视图。
3、然后我们选择分析,定义多重变量。
4、然后我们从分析处,将单选与多选交叉分析。
5、然后我们定义交叉分析格式,点击选项。
6、然后我们定义范围,点击“确定”,输出结果即可。
参考技术A1、首先打开spss依次打开文件,打开、最后打开数据导入选项,导入sav数据:
2、这里选择好数据直接双击打开即可:
3、然后点击菜单中分析,描述统计,交叉表,弹出交叉表的选项:
4、打开交叉表以后,将对应的数据拖拽到对应的行和列下方的方框里,然后直接单击下方的确定即可:
5、然后继续勾选总计,点击下方继续按钮,如果需要百分比可以勾选百分比的选项:
6、随后就会生成实力中的饮料类型和消费者性别的列联表及其分析表了,表中对饮料的消费情况也是一目了然的。以上就是使用spss进行交叉列联表分析的方法:
参考技术B1、首先打开spss,按照“文件”-“打开”-“数据”导入sav数据。
2、本例使用的数据是“饮料类型的交叉表”,选中直接打开即可。
3、制作列联表,按照图中步骤,点击“分析”-“描述统计”-“交叉表”即可。
4、打开“交叉表”。将对应的数据拖拽到对应的“行”(“列”)下方的方框里(或者点击最左边方框中的数据,点击中间的箭头,也能实现相同的动作)。
5、根据需要勾选百比分框里的“行”或者“列”(此例以行为例),继续勾选“总计”,点击下方“继续”按钮。
6、生成的是饮料类型和消费者性别的列联表及其分析表。
参考技术CSPSS提供了多种适用于不同类型数据的相关系数表达,这些相关性检验的零假设都是:行和列变量之间相互独立,不存在显著的相关关系。根据SPSS检验后得出的相伴概率(Concomitant Significance)判断是否存在相关关系。如果相伴概率小于显著性水平0.05,那么拒绝零假设,行列变量之间彼此相关;如果相伴概率大于显著性水平0.05,那么接受原假设,行列变量之间彼此独立。
在交叉列联表分析中,SPSS所提供的相关关系的检验方法主要有以下3种:
(1)卡方(χ2)统计检验:常用于检验行列变量之间是否相关。计算公式为:
其中,f0表示实际观察频数,fe表示期望频数。
卡方统计量服从(行数 1) (列数 1)个自由度的卡方统计。SPSS在计算卡方统计量时,同时给出相应的相伴概率,由此判断行列变量之间是否相关。
(2)列联系数(Contingency coefficient):常用于名义变量之间的相关系数计算。计算公式由卡方统计量修改而得,公式如下:
(3) 系数(Phi and Cramer's V):常用于名义变量之间的相关系数计算。计算公式由卡方统计量修改而得,公式如下:
系数介于0和1之间,其中,K为行数和列数较小的实际数。
交叉列联表分析的具体操作步骤如下:
打开数据文件,选择【分析】(Analyze)菜单,单击【描述统计】(Descriptive Statistics)命令下的【交叉表】(Crosstabs)命令。"交叉表"(Crosstabs)主对话框如图3-13所示。
在该主对话框中,左边的变量列表为原变量列表,通过单击 按钮可选择一个或者几个变量进入右边的"行"(Row(s))变量列表框、"列"(Column(s))变量列表框和"层"(Layer)变量列表框中。
如果是二维列联表分析,只需选择行列变量即可,但如进行三维以上的列联表分析,可以将其他变量作为控制变量选到"层"(Layer)变量列表框中。有多个层控制变量时,可以根据实际的分析要求确定它们的层次,既可以是同层次的也可以是逐层叠加的。
在"交叉表"对话框底端有两个可选择项:
显示复式条形图(Display clustered bar chart):指定绘制各个变量不同交叉取值下关于频数分布的柱形图;
取消表格(Suppress table):不输出列联表的具体表格,而直接显示交叉列联表分析过程中的统计量,如果没有选中统计量,则不产生任何结果。所以,一般情况下,只有在分析行列变量间关系时选择此项。
该对话框的右端有4个按钮,从上到下依次为【精确】(Exact)按钮、【统计量】(Statistics)按钮、【单元格】(Cells)按钮和【格式】(Format)按钮。单击可进入对应的对话框。
单击【精确】(Exact)按钮,打开"精确检验"(Exact Tests)对话框,如图3-14所示。
该对话框提供了3种用于不同条件的检验方式来检验行列变量的相关性。用户可选择以下3种检验方式之一:
仅渐近法(Asymptotic only):适用于具有渐近分布的大样本数据,SPSS默认选择该项。
Monte Carlo(蒙特卡罗法):此项为精确显著性水平值的无偏估计,无需数据具有渐近分布的假设,是一种非常有效的计算确切显著性水平的方法。在"置信水平"(Confidence Level)参数框内输入数据,可以确定置信区间的大小,一般为90、95、99。在"样本数"(Number of samples)参数框中可以输入数据的样本容量。
精确(Exact):观察结果概率,同时在下面的"每个检验的时间限制为"(Time limit per test)的参数框内,选择进行精确检验的最大时间限度。
用户在本对话框内进行选择后,单击【继续】(Continue)按钮即可返回"交叉表"主对话框。一般情况下,"精确检验"(Exact Tests)对话框的选项都默认为系统默认值,不作调整。
单击【统计量】(Statistics)按钮,打开"交叉表:统计量"(Crosstabs:Statistics)对话框,如图3-15所示。
在该对话框中,用户可以选择输出合适的统计检验统计量。对话框中各选项的意义如下:
(1)卡方(Chi-square)检验复选框:检验列联表行列变量的独立性检验,也被称为Pearson chi-square检验、χ2检验。
(2)相关性(Correlations)检验复选框:输出列联表行列变量的Pearson相关系数或Spearman相关系数。
(3)名义(Nominal)栏:适用于名称变量统计量。
相依系数(Contingency coefficient):即Pearson相关系数或Spearman相关系数。
Phi 和Cramer变量( 系数):常用于名义变量之间的相关系数计算。计算公式由卡方统计量修改而得,如公式(3.13)所示。ψ系数介于0和1之间,其中,K为行数和列数较小的实际数。
Lambda(λ系数):在自变量预测中用于反映比例缩减误差,其值为1时表明自变量预测因变量好,为0时表明自变量预测因变量差。
不定性系数(Uncertainty coefficient):以熵为标准的比例缩减误差,其值接近1时表明后一变量的信息很大程度上来自前一变量,其值接近0时表明后一变量的信息与前一变量无关。
(4)有序(Ordinal)栏:适用于有序变量的统计量。
Gamma(伽马系数,γ系数):两有序变量之间的关联性的对称检验。其数值界于0和1之间,所有观察实际数集中于左上角和右下角时,取值为1,表示两个变量之间有很强的相关;取值为0时,表示两个变量之间相互独立。
Somers'd值:两有序变量之间的关联性的检验,取值范围为[-1,1]。
Kendall s tau-b值:考虑有结的秩或等级变量关联性的非参数检验,相同的观察值选入计算过程中,取值范围为[-1,1]。
Kendall s tau-c值:忽略有结的秩或等级变量关联性的非参数检验,相同的观察值不选入计算过程,取值范围界为[-1,1]。
(5)按区间标定(Nominal by interval)栏:适用于一个名义变量与一个等距变量的相关性检验。
Kappa系数:检验数据内部的一致性,仅适用于具有相同分类值和相同分类数量的变量交叉表。
Eta值:其平方值可认为是因变量受不同因素影响所致方差的比例。
风险(相对危险度):检验事件发生和某因素之间的关联性。
McNemar检验:主要用于检验配对的资料率(相当于配对卡方检验)。
(6)Cochran's and Mantel-Haenszel统计量复选框:适用于在一个二值因素变量和一个二值响应变量之间的独立性检验。
用户在"交叉表:统计量"对话框中进行选择后,单击【继续】(Continue),即可返回"交叉表"(Crosstabs)主对话框。一般情况下,对"交叉表:统计量"对话框内的选项不作选择或选择较为常用的卡方检验。
单击【单元格】(Cells)按钮,打开"交叉表:单元显示"(Crosstabs:Cell Display)对话框,如图3-16所示。
在该对话框中,用户可以指定列联表单元格中的输出内容。SPSS17.0默认在交叉列联表中输出实际的观察值,但观察值有时候不能确切地反映事物的实质,因此还需要输出其他的数据项。对话框中各选项的具体意义如下:
(1)计数(Counts)栏:
观察值(Observed):系统默认选项,表示输出为实际观察值。
期望值(Expected):表示输出为理论值。
(2)百分比(Percentages)栏:
行(Row)百分比:以行为单元,统计行变量的百分比。
列(Column)百分比:以列为单元,统计列变量的百分比。
总计(Total)百分比:行列变量的百分比都进行输出。
(3)残差(Residuals)栏:
未标准化(Unstandardized):输出非标准化残差,为实际数与理论数的差值。
标准化(Standardized):输出标准化残差,为实际数与理论数的差值除以理论数。
调节的标准化(Adjusted standardized):输出修正标准化残差,为标准误确定的单元格残差。
(4)非整数权重(Noninteger Weights)栏:
四舍五入单元格计数(Round cell counts,系统默认):将单元格计数的非整数部分的尾数四舍五入为整数。
截短单元格计数(Truncate cell counts):将单元格计数的非整数部分的尾数舍去,直接化为整数。
四舍五入个案权重(Round case Weights):将观测量权数的非整数部分的尾数四舍五入为整数。
截短个案权重(Truncate case Weights):将观测量权数的非整数部分的尾数舍去,化为整数。
无调节(No adjustments):不对计数数据进行调整。
用户在"交叉表:单元显示"对话框中进行选择后,单击【继续】(Continue)按钮,即可返回"交叉表"主对话框。一般情况下,对"交叉表:单元显示"对话框的选项都默认为系统默认值,不作调整。
单击【格式】(Format)按钮,打开"交叉表:表格格式"(Crosstabs:Table Format)对话框,如图3-17所示。
在该对话框中,用户可以指定列联表的输出排列顺序。对话框中各选项的具体意义如下:
在行序(Row Order)栏中有如下两个选项:
升序(Ascending):系统默认,以升序显示各变量值;
降序(Descending):以降序显示各变量值。
用户在该对话框中进行选择后,单击【继续】(Continue)按钮,即可返回"交叉表"主对话框。
在"交叉表"对话框中单击【确定】(OK)按钮,可在输出窗口中得到数据概述、交叉列联表、卡方检验表、交叉分组下频率分布柱形图、相对危险性估计等图表。
本回答被提问者和网友采纳 参考技术D 用SPSS打开数据文件,然后依次打开“分析”--“描述统计”--“交叉表格”,即可打开交叉分析对...2.
选中“您的年龄"放入“行”,选中“您是否使用过知识付费”放入到“列”。
3.
选中右上角第二个按钮“Statistics",出现统计对话框。选中“卡方”和“Phi和Crame...
以上是关于SPSS—描述性统计分析—列联表的主要内容,如果未能解决你的问题,请参考以下文章