Java提高篇(二七)-----TreeMap
Posted 花月世界
tags:
篇首语:本文由小常识网(cha138.com)小编为大家整理,主要介绍了Java提高篇(二七)-----TreeMap相关的知识,希望对你有一定的参考价值。
TreeMap的实现是红黑树算法的实现,所以要了解TreeMap就必须对红黑树有一定的了解,其实这篇博文的名字叫做:根据红黑树的算法来分析TreeMap的实现,但是为了与Java提高篇系列博文保持一致还是叫做TreeMap比较好。通过这篇博文你可以获得如下知识点:
1、红黑树的基本概念。
2、红黑树增加节点、删除节点的实现过程。
3、红黑树左旋转、右旋转的复杂过程。
4、Java 中TreeMap是如何通过put、deleteEntry两个来实现红黑树增加、删除节点的。
我想通过这篇博文你对TreeMap一定有了更深的认识。好了,下面先简单普及红黑树知识。
一、红黑树简介
红黑树又称红-黑二叉树,它首先是一颗二叉树,它具体二叉树所有的特性。同时红黑树更是一颗自平衡的排序二叉树。
我们知道一颗基本的二叉树他们都需要满足一个基本性质--即树中的任何节点的值大于它的左子节点,且小于它的右子节点。按照这个基本性质使得树的检索效率大大提高。我们知道在生成二叉树的过程是非常容易失衡的,最坏的情况就是一边倒(只有右/左子树),这样势必会导致二叉树的检索效率大大降低(O(n)),所以为了维持二叉树的平衡,大牛们提出了各种实现的算法,如:AVL,SBT,伸展树,TREAP ,红黑树等等。
平衡二叉树必须具备如下特性:它是一棵空树或它的左右两个子树的高度差的绝对值不超过1,并且左右两个子树都是一棵平衡二叉树。也就是说该二叉树的任何一个等等子节点,其左右子树的高度都相近。
红黑树顾名思义就是节点是红色或者黑色的平衡二叉树,它通过颜色的约束来维持着二叉树的平衡。对于一棵有效的红黑树二叉树而言我们必须增加如下规则:
1、每个节点都只能是红色或者黑色
2、根节点是黑色
3、每个叶节点(NIL节点,空节点)是黑色的。
4、如果一个结点是红的,则它两个子节点都是黑的。也就是说在一条路径上不能出现相邻的两个红色结点。
5、从任一节点到其每个叶子的所有路径都包含相同数目的黑色节点。
这些约束强制了红黑树的关键性质: 从根到叶子的最长的可能路径不多于最短的可能路径的两倍长。结果是这棵树大致上是平衡的。因为操作比如插入、删除和查找某个值的最坏情况时间都要求与树的高度成比例,这个在高度上的理论上限允许红黑树在最坏情况下都是高效的,而不同于普通的二叉查找树。所以红黑树它是复杂而高效的,其检索效率O(log n)。下图为一颗典型的红黑二叉树。
对于红黑二叉树而言它主要包括三大基本操作:左旋、右旋、着色。
右旋
(图片来自:http://www.cnblogs.com/yangecnu/p/Introduce-Red-Black-Tree.html)
本节参考文献:http://baike.baidu.com/view/133754.htm?fr=aladdin-----百度百科
注:由于本文主要是讲解Java中TreeMap,所以并没有对红黑树进行非常深入的了解和研究,如果诸位想对其进行更加深入的研究Lz提供几篇较好的博文:
1、红黑树系列集锦
3、红黑树
二、TreeMap数据结构
>>>>>>回归主角:TreeMap<<<<<<
TreeMap的定义如下:
public class TreeMap<K,V>
extends AbstractMap<K,V>
implements NavigableMap<K,V>, Cloneable, java.io.Serializable
TreeMap继承AbstractMap,实现NavigableMap、Cloneable、Serializable三个接口。其中AbstractMap表明TreeMap为一个Map即支持key-value的集合, NavigableMap(更多)则意味着它支持一系列的导航方法,具备针对给定搜索目标返回最接近匹配项的导航方法 。
TreeMap中同时也包含了如下几个重要的属性:
//比较器,因为TreeMap是有序的,通过comparator接口我们可以对TreeMap的内部排序进行精密的控制
private final Comparator<? super K> comparator;
//TreeMap红-黑节点,为TreeMap的内部类
private transient Entry<K,V> root = null;
//容器大小
private transient int size = 0;
//TreeMap修改次数
private transient int modCount = 0;
//红黑树的节点颜色--红色
private static final boolean RED = false;
//红黑树的节点颜色--黑色
private static final boolean BLACK = true;
对于叶子节点Entry是TreeMap的内部类,它有几个重要的属性:
//键
K key;
//值
V value;
//左孩子
Entry<K,V> left = null;
//右孩子
Entry<K,V> right = null;
//父亲
Entry<K,V> parent;
//颜色
boolean color = BLACK;
注:前面只是开胃菜,下面是本篇博文的重中之重,在下面两节我将重点讲解treeMap的put()、delete()方法。通过这两个方法我们会了解红黑树增加、删除节点的核心算法。
三、TreeMap put()方法
在了解TreeMap的put()方法之前,我们先了解红黑树增加节点的算法。
红黑树增加节点
红黑树在新增节点过程中比较复杂,复杂归复杂它同样必须要依据上面提到的五点规范,同时由于规则1、2、3基本都会满足,下面我们主要讨论规则4、5。假设我们这里有一棵最简单的树,我们规定新增的节点为N、它的父节点为P、P的兄弟节点为U、P的父节点为G。
对于新节点的插入有如下三个关键地方:
- 1、插入新节点总是红色节点 。
- 2、如果插入节点的父节点是黑色, 能维持性质 。
- 3、如果插入节点的父节点是红色, 破坏了性质. 故插入算法就是通过重新着色或旋转, 来维持性质 。
为了保证下面的阐述更加清晰和根据便于参考,我这里将红黑树的五点规定再贴一遍:
-
1、每个节点都只能是红色或者黑色
-
2、根节点是黑色
-
3、每个叶节点(NIL节点,空节点)是黑色的。
-
4、如果一个结点是红的,则它两个子节点都是黑的。也就是说在一条路径上不能出现相邻的两个红色结点。
-
5、从任一节点到其每个叶子的所有路径都包含相同数目的黑色节点。
-
一、为跟节点
-
若新插入的节点N没有父节点,则直接当做根据节点插入即可,同时将颜色设置为黑色。(如图一(1))
二、父节点为黑色
这种情况新节点N同样是直接插入,同时颜色为红色,由于根据规则四它会存在两个黑色的叶子节点,值为null。同时由于新增节点N为红色,所以通过它的子节点的路径依然会保存着相同的黑色节点数,同样满足规则5。(如图一(2))
(图一)
三、若父节点P和P的兄弟节点U都为红色
对于这种情况若直接插入肯定会出现不平衡现象。怎么处理?P、U节点变黑、G节点变红。这时由于经过节点P、U的路径都必须经过G所以在这些路径上面的黑节点数目还是相同的。但是经过上面的处理,可能G节点的父节点也是红色,这个时候我们需要将G节点当做新增节点递归处理。
四、若父节点P为红色,叔父节点U为黑色或者缺少,且新增节点N为P节点的右孩子
对于这种情况我们对新增节点N、P进行一次左旋转。这里所产生的结果其实并没有完成,还不是平衡的(违反了规则四),这是我们需要进行情况5的操作。
-
五、父节点P为红色,叔父节点U为黑色或者缺少,新增节点N为父节点P左孩子
这种情况有可能是由于情况四而产生的,也有可能不是。对于这种情况先已P节点为中心进行右旋转,在旋转后产生的树中,节点P是节点N、G的父节点。但是这棵树并不规范,它违反了规则4,所以我们将P、G节点的颜色进行交换,使之其满足规范。开始时所有的路径都需要经过G其他们的黑色节点数一样,但是现在所有的路径改为经过P,且P为整棵树的唯一黑色节点,所以调整后的树同样满足规范5。
上面展示了红黑树新增节点的五种情况,这五种情况涵盖了所有的新增可能,不管这棵红黑树多么复杂,都可以根据这五种情况来进行生成。下面就来分析Java中的TreeMap是如何来实现红黑树的。
TreeMap put()方法实现分析
在TreeMap的put()的实现方法中主要分为两个步骤,第一:构建排序二叉树,第二:平衡二叉树。
-
对于排序二叉树的创建,其添加节点的过程如下:
-
1、以根节点为初始节点进行检索。
-
2、与当前节点进行比对,若新增节点值较大,则以当前节点的右子节点作为新的当前节点。否则以当前节点的左子节点作为新的当前节点。
-
3、循环递归2步骤知道检索出合适的叶子节点为止。
-
4、将新增节点与3步骤中找到的节点进行比对,如果新增节点较大,则添加为右子节点;否则添加为左子节点。
-
按照这个步骤我们就可以将一个新增节点添加到排序二叉树中合适的位置。如下:
-
public V put(K key, V value) { //用t表示二叉树的当前节点 Entry<K,V> t = root; //t为null表示一个空树,即TreeMap中没有任何元素,直接插入 if (t == null) { //比较key值,个人觉得这句代码没有任何意义,空树还需要比较、排序? compare(key, key); // type (and possibly null) check //将新的key-value键值对创建为一个Entry节点,并将该节点赋予给root root = new Entry<>(key, value, null); //容器的size = 1,表示TreeMap集合中存在一个元素 size = 1; //修改次数 + 1 modCount++; return null; } int cmp; //cmp表示key排序的返回结果 Entry<K,V> parent; //父节点 // split comparator and comparable paths Comparator<? super K> cpr = comparator; //指定的排序算法 //如果cpr不为空,则采用既定的排序算法进行创建TreeMap集合 if (cpr != null) { do { parent = t; //parent指向上次循环后的t //比较新增节点的key和当前节点key的大小 cmp = cpr.compare(key, t.key); //cmp返回值小于0,表示新增节点的key小于当前节点的key,则以当前节点的左子节点作为新的当前节点 if (cmp < 0) t = t.left; //cmp返回值大于0,表示新增节点的key大于当前节点的key,则以当前节点的右子节点作为新的当前节点 else if (cmp > 0) t = t.right; //cmp返回值等于0,表示两个key值相等,则新值覆盖旧值,并返回新值 else return t.setValue(value); } while (t != null); } //如果cpr为空,则采用默认的排序算法进行创建TreeMap集合 else { if (key == null) //