Redis02 Redis客户端之Java

Posted 寻渝记

tags:

篇首语:本文由小常识网(cha138.com)小编为大家整理,主要介绍了Redis02 Redis客户端之Java相关的知识,希望对你有一定的参考价值。

 

1 查看支持Java的redis客户端

  本博文采用 Jedis 作为redis客户端,采用 commons-pool2 作为连接redis服务器的连接池

 

2 下载相关依赖与实战

  2.1 到 Repository 官网下载jar包

    jedis

<!-- https://mvnrepository.com/artifact/redis.clients/jedis -->
<dependency>
    <groupId>redis.clients</groupId>
    <artifactId>jedis</artifactId>
    <version>2.9.0</version>
</dependency>

   commons-pool2   

<!-- https://mvnrepository.com/artifact/org.apache.commons/commons-pool2 -->
<dependency>
    <groupId>org.apache.commons</groupId>
    <artifactId>commons-pool2</artifactId>
    <version>2.5.0</version>
</dependency>

  2.2 传统使用(eclipse)

    准备:创建一个普通的Java项目

    2.2.1 添加jar包

      在项目的根目录下创建一个lib文件夹,并将下载好的两个jar包添加到lib文件夹里面

      

    2.2.2 将jar包添加到项目构建路径中

      选中lib中的jar包 -> 右键 -> build path -> add to build path

    2.2.3 在build path中查看

      项目文件夹 -> 右键 -> build path -> configure build path 

      

      技巧01:也可以在 build path中进行添加【ps: 待添加的jar包可以在任何位置,不用将他们放到项目文件夹下的lib中,我这样做的目的是为了避免jar包被不小心删除掉】

  2.3 代码实现

    借助 Jedis 去对 Redis 进行操作

    技巧01:其实和操作mysql的套路一样

    2.3.1 单实例模式

      就是不使用连接池的模式,每次要对 Redis 进行操作时先自己创建连接,在进行相关操作,操作完后自己在关闭连接;这样很消耗内存

    @Test
    public void test01() {
        System.out.println("Hello Boy");
        // 01 获取Jedis客户端【设置IP和端口】
        Jedis jedis = new Jedis("192.168.233.134", 6379);
        
        // 02 保存数据
        jedis.set("name", "王杨帅");
        
        // 03 获取数据
        String value = jedis.get("name");
        System.out.println("获取到的数据为:" + value);
        
        String age = jedis.get("age");
        System.out.println("获取到的年龄信息为:" + age);
        
        
        // 04 释放资源
        jedis.close();
        
    }
View Code

    2.3.2 连接池模式

      就是在项目启动时先创建一些连接,谁需要操作 Redis 时就直接拿一个空闲的连接过去就可以啦,用完再还回去即可;这样就避免了连接的重复创建和销毁,从而减少了内存的消耗。

    /**
     * 使用连接池的方式
     */
    @Test
    public void demo02() {
        System.out.println("Hello Warrior");
        
        // 01 获取连接池对象
        JedisPoolConfig config = new JedisPoolConfig();
        // 0101 最大连接数
        config.setMaxTotal(30);
        // 0102 最大空闲连接数
        config.setMaxIdle(10);
        
        // 02 获取连接池
        JedisPool jedisPool = new JedisPool(config, "192.168.233.133", 6379);
        
        // 03 核心对象【获取Jedis客户端对象】
        Jedis jedis = null;
        try {
            // 0301 通过连接池获取Jedis客户端
            jedis = jedisPool.getResource();
            // 0302 设置数据
            jedis.set("name", "三少");
            // 0303 获取数据
            String value = jedis.get("name");
            System.out.println(value);
        } catch (Exception e) {
            // TODO: handle exception
            e.printStackTrace();
        } finally {
            if (jedis != null) {
                jedis.close();
            }
            if (jedisPool != null) {
                jedisPool.close();
            }
        }
    }
View Code
package cn.xinagxu.jedis;

import org.junit.Test;

import redis.clients.jedis.Jedis;
import redis.clients.jedis.JedisPool;
import redis.clients.jedis.JedisPoolConfig;

/**
 * Jedis测试
 * @author a
 *
 */
public class JedisDemo01 {
    
    /**
     * 单实例的测试
     */
    @Test
    public void test01() {
        System.out.println("Hello Boy");
        // 01 获取Jedis客户端【设置IP和端口】
        Jedis jedis = new Jedis("192.168.233.134", 6379);
        
        // 02 保存数据
        jedis.set("name", "王杨帅");
        
        // 03 获取数据
        String value = jedis.get("name");
        System.out.println("获取到的数据为:" + value);
        
        String age = jedis.get("age");
        System.out.println("获取到的年龄信息为:" + age);
        
        
        // 04 释放资源
        jedis.close();
        
    }
    
    /**
     * 使用连接池的方式
     */
    @Test
    public void demo02() {
        System.out.println("Hello Warrior");
        
        // 01 获取连接池对象
        JedisPoolConfig config = new JedisPoolConfig();
        // 0101 最大连接数
        config.setMaxTotal(30);
        // 0102 最大空闲连接数
        config.setMaxIdle(10);
        
        // 02 获取连接池
        JedisPool jedisPool = new JedisPool(config, "192.168.233.133", 6379);
        
        // 03 核心对象【获取Jedis客户端对象】
        Jedis jedis = null;
        try {
            // 0301 通过连接池获取Jedis客户端
            jedis = jedisPool.getResource();
            // 0302 设置数据
            jedis.set("name", "三少");
            // 0303 获取数据
            String value = jedis.get("name");
            System.out.println(value);
        } catch (Exception e) {
            // TODO: handle exception
            e.printStackTrace();
        } finally {
            if (jedis != null) {
                jedis.close();
            }
            if (jedisPool != null) {
                jedisPool.close();
            }
        }
    }
    
}
代码汇总

 

3 传统使用(IDEA)

  准备:新建一个普通的Java项目

  3.1 添加jar文件

    在项目的根目录下创建一个lib目录,将下载好的两个jar包复制到lib文件夹里面

    

  3.2 将jar文件添加到项目的构建目录中

    选中相应的jar包 -> 右键 -> add as library 

  3.3 查看添加的jar包

    file -> project structure -> modules -> dependencies 

    技巧01:peoject structure中也可以进行jar包的添加

    

  3.4 代码实现

package hello;

import org.junit.Test;
import redis.clients.jedis.Jedis;
import redis.clients.jedis.JedisPool;
import redis.clients.jedis.JedisPoolConfig;

/**
 * @author 王杨帅
 * @create 2018-06-23 21:39
 * @desc
 **/
public class RedisTest {
    @Test
    public void test01() {
        // 01 获取Jedis客户端【设置IP和端口】
        Jedis jedis = new Jedis("192.168.233.134", 6379);

        // 02 保存数据
        jedis.set("name", "王杨帅");

        // 03 获取数据
        String value = jedis.get("name");
        System.out.println("获取到的数据为:" + value);

        String age = jedis.get("age");
        System.out.println("获取到的年龄信息为:" + age);


        // 04 释放资源
        jedis.close();
    }

    /**
     * 使用连接池的方式
     */
    @Test
    public void demo02() {
        System.out.println("Hello Warrior");

        // 01 获取连接池对象
        JedisPoolConfig config = new JedisPoolConfig();
        // 0101 最大连接数
        config.setMaxTotal(30);
        // 0102 最大空闲连接数
        config.setMaxIdle(10);

        // 02 获取连接池
        JedisPool jedisPool = new JedisPool(config, "192.168.233.133", 6379);

        // 03 核心对象【获取Jedis客户端对象】
        Jedis jedis = null;
        try {
            // 0301 通过连接池获取Jedis客户端
            jedis = jedisPool.getResource();
            // 0302 设置数据
            jedis.set("name", "三少");
            // 0303 获取数据
            String value = jedis.get("name");
            System.out.println(value);
        } catch (Exception e) {
            // TODO: handle exception
            e.printStackTrace();
        } finally {
            if (jedis != null) {
                jedis.close();
            }
            if (jedisPool != null) {
                jedisPool.close();
            }
        }
    }
}
View Code

 

4 利用 jedis 客户端时出现的Bug

  4.1 Redis 服务端拒接连接

    原因:Redis 服务端默认只用本机才可以连接

    解决:修改 redis.conf 配置文件 -> 将 bind 127.0.0.1 注释掉即可

  4.2 Redis 服务端开启了保护模式,拒绝外网访问

    原因:Redis是在守护状态下运行

    解决:修改 redis.conf 配置文件 -> 将 protected-mode 后面的 yes 改为 no 即可

  4.3 修改后的 redis.conf  配置文件 

# Redis configuration file example.
#
# Note that in order to read the configuration file, Redis must be
# started with the file path as first argument:
#
# ./redis-server /path/to/redis.conf

# Note on units: when memory size is needed, it is possible to specify
# it in the usual form of 1k 5GB 4M and so forth:
#
# 1k => 1000 bytes
# 1kb => 1024 bytes
# 1m => 1000000 bytes
# 1mb => 1024*1024 bytes
# 1g => 1000000000 bytes
# 1gb => 1024*1024*1024 bytes
#
# units are case insensitive so 1GB 1Gb 1gB are all the same.

################################## INCLUDES ###################################

# Include one or more other config files here.  This is useful if you
# have a standard template that goes to all Redis servers but also need
# to customize a few per-server settings.  Include files can include
# other files, so use this wisely.
#
# Notice option "include" won\'t be rewritten by command "CONFIG REWRITE"
# from admin or Redis Sentinel. Since Redis always uses the last processed
# line as value of a configuration directive, you\'d better put includes
# at the beginning of this file to avoid overwriting config change at runtime.
#
# If instead you are interested in using includes to override configuration
# options, it is better to use include as the last line.
#
# include /path/to/local.conf
# include /path/to/other.conf

################################## NETWORK #####################################

# By default, if no "bind" configuration directive is specified, Redis listens
# for connections from all the network interfaces available on the server.
# It is possible to listen to just one or multiple selected interfaces using
# the "bind" configuration directive, followed by one or more IP addresses.
#
# Examples:
#
# bind 192.168.1.100 10.0.0.1
# bind 127.0.0.1 ::1
#
# ~~~ WARNING ~~~ If the computer running Redis is directly exposed to the
# internet, binding to all the interfaces is dangerous and will expose the
# instance to everybody on the internet. So by default we uncomment the
# following bind directive, that will force Redis to listen only into
# the IPv4 lookback interface address (this means Redis will be able to
# accept connections only from clients running into the same computer it
# is running).
#
# IF YOU ARE SURE YOU WANT YOUR INSTANCE TO LISTEN TO ALL THE INTERFACES
# JUST COMMENT THE FOLLOWING LINE.
# ~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~
#bind 127.0.0.1

# Protected mode is a layer of security protection, in order to avoid that
# Redis instances left open on the internet are accessed and exploited.
#
# When protected mode is on and if:
#
# 1) The server is not binding explicitly to a set of addresses using the
#    "bind" directive.
# 2) No password is configured.
#
# The server only accepts connections from clients connecting from the
# IPv4 and IPv6 loopback addresses 127.0.0.1 and ::1, and from Unix domain
# sockets.
#
# By default protected mode is enabled. You should disable it only if
# you are sure you want clients from other hosts to connect to Redis
# even if no authentication is configured, nor a specific set of interfaces
# are explicitly listed using the "bind" directive.
protected-mode no

# Accept connections on the specified port, default is 6379 (IANA #815344).
# If port 0 is specified Redis will not listen on a TCP socket.
port 6379

# TCP listen() backlog.
#
# In high requests-per-second environments you need an high backlog in order
# to avoid slow clients connections issues. Note that the Linux kernel
# will silently truncate it to the value of /proc/sys/net/core/somaxconn so
# make sure to raise both the value of somaxconn and tcp_max_syn_backlog
# in order to get the desired effect.
tcp-backlog 511

# Unix socket.
#
# Specify the path for the Unix socket that will be used to listen for
# incoming connections. There is no default, so Redis will not listen
# on a unix socket when not specified.
#
# unixsocket /tmp/redis.sock
# unixsocketperm 700

# Close the connection after a client is idle for N seconds (0 to disable)
timeout 0

# TCP keepalive.
#
# If non-zero, use SO_KEEPALIVE to send TCP ACKs to clients in absence
# of communication. This is useful for two reasons:
#
# 1) Detect dead peers.
# 2) Take the connection alive from the point of view of network
#    equipment in the middle.
#
# On Linux, the specified value (in seconds) is the period used to send ACKs.
# Note that to close the connection the double of the time is needed.
# On other kernels the period depends on the kernel configuration.
#
# A reasonable value for this option is 300 seconds, which is the new
# Redis default starting with Redis 3.2.1.
tcp-keepalive 300

################################# GENERAL #####################################

# By default Redis does not run as a daemon. Use \'yes\' if you need it.
# Note that Redis will write a pid file in /var/run/redis.pid when daemonized.
daemonize yes

# If you run Redis from upstart or systemd, Redis can interact with your
# supervision tree. Options:
#   supervised no      - no supervision interaction
#   supervised upstart - signal upstart by putting Redis into SIGSTOP mode
#   supervised systemd - signal systemd by writing READY=1 to $NOTIFY_SOCKET
#   supervised auto    - detect upstart or systemd method based on
#                        UPSTART_JOB or NOTIFY_SOCKET environment variables
# Note: these supervision methods only signal "process is ready."
#       They do not enable continuous liveness pings back to your supervisor.
supervised no

# If a pid file is specified, Redis writes it where specified at startup
# and removes it at exit.
#
# When the server runs non daemonized, no pid file is created if none is
# specified in the configuration. When the server is daemonized, the pid file
# is used even if not specified, defaulting to "/var/run/redis.pid".
#
# Creating a pid file is best effort: if Redis is not able to create it
# nothing bad happens, the server will start and run normally.
pidfile /var/run/redis_6379.pid

# Specify the server verbosity level.
# This can be one of:
# debug (a lot of information, useful for development/testing)
# verbose (many rarely useful info, but not a mess like the debug level)
# notice (moderately verbose, what you want in production probably)
# warning (only very important / critical messages are logged)
loglevel notice

# Specify the log file name. Also the empty string can be used to force
# Redis to log on the standard output. Note that if you use standard
# output for logging but daemonize, logs will be sent to /dev/null
logfile ""

# To enable logging to the system logger, just set \'syslog-enabled\' to yes,
# and optionally update the other syslog parameters to suit your needs.
# syslog-enabled no

# Specify the syslog identity.
# syslog-ident redis

# Specify the syslog facility. Must be USER or between LOCAL0-LOCAL7.
# syslog-facility local0

# Set the number of databases. The default database is DB 0, you can select
# a different one on a per-connection basis using SELECT <dbid> where
# dbid is a number between 0 and \'databases\'-1
databases 16

################################ SNAPSHOTTING  ################################
#
# Save the DB on disk:
#
#   save <seconds> <changes>
#
#   Will save the DB if both the given number of seconds and the given
#   number of write operations against the DB occurred.
#
#   In the example below the behaviour will be to save:
#   after 900 sec (15 min) if at least 1 key changed
#   after 300 sec (5 min) if at least 10 keys changed
#   after 60 sec if at least 10000 keys changed
#
#   Note: you can disable saving completely by commenting out all "save" lines.
#
#   It is also possible to remove all the previously configured save
#   points by adding a save directive with a single empty string argument
#   like in the following example:
#
#   save ""

save 900 1
save 300 10
save 60 10000

# By default Redis will stop accepting writes if RDB snapshots are enabled
# (at least one save point) and the latest background save failed.
# This will make the user aware (in a hard way) that data is not persisting
# on disk properly, otherwise chances are that no one will notice and some
# disaster will happen.
#
# If the background saving process will start working again Redis will
# automatically allow writes again.
#
# However if you have setup your proper monitoring of the Redis server
# and persistence, you may want to disable this feature so that Redis will
# continue to work as usual even if there are problems with disk,
# permissions, and so forth.
stop-writes-on-bgsave-error yes

# Compress string objects using LZF when dump .rdb databases?
# For default that\'s set to \'yes\' as it\'s almost always a win.
# If you want to save some CPU in the saving child set it to \'no\' but
# the dataset will likely be bigger if you have compressible values or keys.
rdbcompression yes

# Since version 5 of RDB a CRC64 checksum is placed at the end of the file.
# This makes the format more resistant to corruption but there is a performance
# hit to pay (around 10%) when saving and loading RDB files, so you can disable it
# for maximum performances.
#
# RDB files created with checksum disabled have a checksum of zero that will
# tell the loading code to skip the check.
rdbchecksum yes

# The filename where to dump the DB
dbfilename dump.rdb

# The working directory.
#
# The DB will be written inside this directory, with the filename specified
# above using the \'dbfilename\' configuration directive.
#
# The Append Only File will also be created inside this directory.
#
# Note that you must specify a directory here, not a file name.
dir ./

################################# REPLICATION #################################

# Master-Slave replication. Use slaveof to make a Redis instance a copy of
# another Redis server. A few things to understand ASAP about Redis replication.
#
# 1) Redis replication is asynchronous, but you can configure a master to
#    stop accepting writes if it appears to be not connected with at least
#    a given number of slaves.
# 2) Redis slaves are able to perform a partial resynchronization with the
#    master if the replication link is lost for a relatively small amount of
#    time. You may want to configure the replication backlog size (see the next
#    sections of this file) with a sensible value depending on your needs.
# 3) Replication is automatic and does not need user intervention. After a
#    network partition slaves automatically try to reconnect to masters
#    and resynchronize with them.
#
# slaveof <masterip> <masterport>

# If the master is password protected (using the "requirepass" configuration
# directive below) it is possible to tell the slave to authenticate before
# starting the replication synchronization process, otherwise the master will
# refuse the slave request.
#
# masterauth <master-password>

# When a slave loses its connection with the master, or when the replication
# is still in progress, the slave can act in two different ways:
#
# 1) if slave-serve-stale-data is set to \'yes\' (the default) the slave will
#    still reply to client requests, possibly with out of date data, or the
#    data set may just be empty if this is the first synchronization.
#
# 2) if slave-serve-stale-data is set to \'no\' the slave will reply with
#    an error "SYNC with master in progress" to all the kind of commands
#    but to INFO and SLAVEOF.
#
slave-serve-stale-data yes

# You can configure a slave instance to accept writes or not. Writing against
# a slave instance may be useful to store some ephemeral data (because data
# written on a slave will be easily deleted after resync with the master) but
# may also cause problems if clients are writing to it because of a
# misconfiguration.
#
# Since Redis 2.6 by default slaves are read-only.
#
# Note: read only slaves are not designed to be exposed to untrusted clients
# on the internet. It\'s just a protection layer against misuse of the instance.
# Still a read only slave exports by default all the administrative commands
# such as CONFIG, DEBUG, and so forth. To a limited extent you can improve
# security of read only slaves using \'rename-command\' to shadow all the
# administrative / dangerous commands.
slave-read-only yes

# Replication SYNC strategy: disk or socket.
#
# -------------------------------------------------------
# WARNING: DISKLESS REPLICATION IS EXPERIMENTAL CURRENTLY
# -------------------------------------------------------
#
# New slaves and reconnecting slaves that are not able to continue the replication
# process just receiving differences, need to do what is called a "full
# synchronization". An RDB file is transmitted from the master to the slaves.
# The transmission can happen in two different ways:
#
# 1) Disk-backed: The Redis master creates a new process that writes the RDB
#                 file on disk. Later the file is transferred by the parent
#                 process to the slaves incrementally.
# 2) Diskless: The Redis master creates a new process that directly writes the
#              RDB file to slave sockets, without touching the disk at all.
#
# With disk-backed replication, while the RDB file is generated, more slaves
# can be queued and served with the RDB file as soon as the current child producing
# the RDB file finishes its work. With diskless replication instead once
# the transfer starts, new slaves arriving will be queued and a new transfer
# will start when the current one terminates.
#
# When diskless replication is used, the master waits a configurable amount of
# time (in seconds) before starting the transfer in the hope that multiple slaves
# will arrive and the transfer can be parallelized.
#
# With slow disks and fast (large bandwidth) networks, diskless replication
# works better.
repl-diskless-sync no

# When diskless replication is enabled, it is possible to configure the delay
# the server waits in order to spawn the child that transfers the RDB via socket
# to the slaves.
#
# This is important since once the transfer starts, it is not possible to serve
# new slaves arriving, that will be queued for the next RDB transfer, so the server
# waits a delay in order to let more slaves arrive.
#
# The delay is specified in seconds, and by default is 5 seconds. To disable
# it entirely just set it to 0 seconds and the transfer will start ASAP.
repl-diskless-sync-delay 5

# Slaves send PINGs to server in a predefined interval. It\'s possible to change
# this interval with the repl_ping_slave_period option. The default value is 10
# seconds.
#
# repl-ping-slave-period 10

# The following option sets the replication timeout for:
#
# 1) Bulk transfer I/O during SYNC, from the point of view of slave.
# 2) Master timeout from the point of view of slaves (data, pings).
# 3) Slave timeout from the point of view of masters (REPLCONF ACK pings).
#
# It is important to make sure that this value is greater than the value
# specified for repl-ping-slave-period otherwise a timeout will be detected
# every time there is low traffic between the master and the slave.
#
# repl-timeout 60

# Disable TCP_NODELAY on the slave socket after SYNC?
#
# If you select "yes" Redis will use a smaller number of TCP packets and
# less bandwidth to send data to slaves. But this can add a delay for
# the data to appear on the slave side, up to 40 milliseconds with
# Linux kernels using a default configuration.
#
# If you select "no" the delay for data to appear on the slave side will
# be reduced but more bandwidth will be used for replication.
#
# By default we optimize for low latency, but in very high traffic conditions
# or when the master and slaves are many hops away, turning this to "yes" may
# be a good idea.
repl-disable-tcp-nodelay no

# Set the replication backlog size. The backlog is a buffer that accumulates
# slave data when slaves are disconnected for some time, so that when a slave
# wants to reconnect again, often a full resync is not needed, but a partial
# resync is enough, just passing the portion of data the slave missed while
# disconnected.
#
# The bigger the replication backlog, the longer the time the slave can be
# disconnected and later be able to perform a partial resynchronization.
#
# The backlog is only allocated once there is at least a slave connected.
#
# repl-backlog-size 1mb

# After a master has no longer connected slaves for some time, the backlog
# will be freed. The following option configures the amount of seconds that
# need to elapse, starting from the time the last slave disconnected, for
# the backlog buffer to be freed.
#
# A value of 0 means to never release the backlog.
#
# repl-backlog-ttl 3600

# The slave priority is an integer number published by Redis in the INFO output.
# It is used by Redis Sentinel in order to select a slave to promote into a
# master if the master is no longer working correctly.
#
# A slave with a low priority number is considered better for promotion, so
# for instance if there are three slaves with priority 10, 100, 25 Sentinel will
# pick the one with priority 10, that is the lowest.
#
# However a special priority of 0 marks the slave as not able to perform the
# role of master, so a slave with priority of 0 will never be selected by
# Redis Sentinel for promotion.
#
# By default the priority is 100.
slave-priority 100

# It is possible for a master to stop accepting writes if there are less than
# N slaves connected, having a lag less or equal than M seconds.
#
# The N slaves need to be in "online" state.
#
# The lag in seconds, that must be <= the specified value, is calculated from
# the last ping received from the slave, that is usually sent every second.
#
# This option does not GUARANTEE that N replicas will accept the write, but
# will limit the window of exposure for lost writes in case not enough slaves
# are available, to the specified number of seconds.
#
# For example to require at least 3 slaves with a lag <= 10 seconds use:
#
# min-slaves-to-write 3
# min-slaves-max-lag 10
#
# Setting one or the other to 0 disables the feature.
#
# By default min-slaves-to-write is set to 0 (feature disabled) and
# min-slaves-max-lag is set to 10.

# A Redis master is able to list the address and port of the attached
# slaves in different ways. For example the "INFO replication" section
# offers this information, which is used, among other tools, by
# Redis Sentinel in order to discover slave instances.
# Another place where this info is available is in the output of the
# "ROLE" command of a masteer.
#
# The listed IP and address normally reported by a slave is obtained
# in the following way:
#
#   IP: The address is auto detected by checking the peer address
#   of the socket used by the slave to connect with the master.
#
#   Port: The port is communicated by the slave during the replication
#   handshake, and is normally the port that the slave is using to
#   list for connections.
#
# However when port forwarding or Network Address Translation (NAT) is
# used, the slave may be actually reachable via different IP and port
# pairs. The following two options can be used by a slave in order to
# report to its master a specific set of IP and port, so that both INFO
# and ROLE will report those values.
#
# There is no need to use both the options if you need to override just
# the port or the IP address.
#
# slave-announce-ip 5.5.5.5
# slave-announce-port 1234

################################## SECURITY ###################################

# Require clients to issue AUTH <PASSWORD> before processing any other
# commands.  This might be useful in environments in which you do not trust
# others with access to the host running redis-server.
#
# This should stay commented out for backward compatibility and because most
# people do not need auth (e.g. they run their own servers).
#
# Warning: since Redis is pretty fast an outside user can try up to
# 150k passwords per second against a good box. This means that you should
# use a very strong password otherwise it will be very easy to break.
#
# requirepass foobared

# Command renaming.
#
# It is possible to change the name of dangerous commands in a shared
# environment. For instance the CONFIG command may be renamed into something
# hard to guess so that it will still be available for internal-use tools
# but not available for general clients.
#
# Example:
#
# rename-command CONFIG b840fc02d524045429941cc15f59e41cb7be6c52
#
# It is also possible to completely kill a command by renaming it into
# an empty string:
#
# rename-command CONFIG ""
#
# Please note that changing the name of commands that are logged into the
# AOF file or transmitted to slaves may cause problems.

################################### LIMITS ####################################

# Set the max number of connected clients at the same time. By default
# this limit is set to 10000 clients, however if the Redis server is not
# able to configure the process file limit to allow for the specified limit
# the max number of allowed clients is set to the current file limit
# minus 32 (as Redis reserves a few file descriptors for internal uses).
#
# Once the limit is reached Redis will close all the new connections sending
# an error \'max number of clients reached\'.
#
# maxclients 10000

# Don\'t use more memory than the specified amount of bytes.
# When the memory limit is reached Redis will try to remove keys
# according to the eviction policy selected (see maxmemory-policy).
#
# If Redis can\'t remove keys according to the policy, or if the policy is
# set to \'noeviction\', Redis will start to reply with errors to commands
# that would use more memory, like SET, LPUSH, and so on, and will continue
# to reply to read-only commands like GET.
#
# This option is usually useful when using Redis as an LRU cache, or to set
# a hard memory limit for an instance (using the \'noeviction\' policy).
#
# WARNING: If you have slaves attached to an instance with maxmemory on,
# the size of the output buffers needed to feed the slaves are subtracted
# from the used memory count, so that network problems / resyncs will
# not trigger a loop where keys are evicted, and in turn the output
# buffer of slaves is full with DELs of keys evicted triggering the deletion
# of more keys, and so forth until the database is completely emptied.
#
# In short... if you have slaves attached it is suggested that you set a lower
# limit for maxmemory so that there is some free RAM on the system for slave
# output buffers (but this is not needed if the policy is \'noeviction\').
#
# maxmemory <bytes>

# MAXMEMORY POLICY: how Redis will select what to remove when maxmemory
# is reached. You can select among five behaviors:
#
# volatile-lru -> remove the key with an expire set using an LRU algorithm
# allkeys-lru -> remove any key according to the LRU algorithm
# volatile-random -> remove a random key with an expire set
# allkeys-random -> remove a random key, any key
# volatile-ttl -> remove the key with the nearest expire time (minor TTL)
# noeviction -> don\'t expire at all, just return an error on write operations
#
# Note: with any of the above policies, Redis will return an error on write
#       operations, when there are no suitable keys for eviction.
#
#       At the date of writing these commands ar

以上是关于Redis02 Redis客户端之Java的主要内容,如果未能解决你的问题,请参考以下文章

Redis数据结构之哈希

分布式缓存技术之Redis_04Redis的应用实战

Redis之java增删改查

Redis之java增删改查

《Redis5.x入门教程》之准备工作数据类型

Redis原理篇之通信协议和内存回收