「Python」使用Pyecharts生成疫情分布地图
Posted
tags:
篇首语:本文由小常识网(cha138.com)小编为大家整理,主要介绍了「Python」使用Pyecharts生成疫情分布地图相关的知识,希望对你有一定的参考价值。
参考技术A最近受江苏疫情影响,好多小伙伴都居家办公咯!为了密切关注疫情动态,最近写了爬取疫情分布的脚本,参考上篇链接。
既然我们已经获得了相应的江苏各个地级市的疫情数据,那么我们如何来使用Python实现将数据可视化在地图上呢?
Apache Echarts 是一个由百度开源的数据可视化,凭借着良好的交互性,精巧的图表设计,得到了众多开发者的认可。而 Python 是一门富有表达力的语言,很适合用于数据处理。当数据分析遇上数据可视化时,pyecharts 诞生了。
简单来说,pyecharts具有以下特性:
3. Pyecharts 安装
使用pip进行安装如下:
因为我们需要使用pycharts绘制地图,此时我们还需要安装相应的地图文件包:
其中:
echarts-countries-pypkg 包为全球国家地图
echarts-china-provinces-pypkg包为中国省级地图
echarts-china-cities-pypkg 包为中国市级地图
安装完上述绘制地图相关的python包后,我们接下来开始画疫情分布地图。
首先,我们先来查看一段Pyecharts相关实现:
上述代码解释如下:
运行后会在当前目录生成 map_jiangsu_0803.html,用浏览器打开后结果如下:
当鼠标移动到对应区域后,会显示出对应地级市今日新增人数。
上述脚本虽然可以实现我们的功能,但是颜色灰灰的,太过于单调,接下来我们来想办法进行美化,实现代码如下:
代码解释如下:
运行后会在当前目录生成 map_jiangsu_0803_new.html,用浏览器打开后结果如下:
同理我们可以得到现有确诊人数分布如下:
进而我们可以得到累计确诊人数分布如下:
python根据json数据画疫情分布地图
目录
注:数据集在文章最后
一.基础地图使用
1.掌握使用pyecharts构建基础的全国地图可视化图表
演示
from pyecharts.charts import Map
from pyecharts.options import VisualMapOpts
map=Map()
data=[
("北京",99),
("上海",199),
("湖南",299),
("台湾",199),
("安徽",299),
("广州",399),
("湖北",599)
]
map.add("地图",data,"china")
map.set_global_opts(
visualmap_opts=VisualMapOpts(
is_show=True
)
)
map.render("1.html")
结果是
这里有个问题
is_show=True表示展示图例,但是不准怎么办?
这就需要手动校准范围
from pyecharts.charts import Map
from pyecharts.options import VisualMapOpts
map=Map()
data=[
("北京",99),
("上海",199),
("湖南",299),
("台湾",199),
("安徽",299),
("广州",399),
("湖北",599)
]
map.add("地图",data,"china")
map.set_global_opts(
visualmap_opts=VisualMapOpts(
is_show=True,
is_piecewise=True,
pieces=[
"min": 1, "max": 9, "label": "1-9人", "color": "#CCFFFF",
"min": 10, "max": 99, "label": "10-99人", "color": "#FFFF99",
"min": 100, "max": 499, "label": "100-499人", "color": "#FF9966",
"min": 500, "max": 999, "label": "500-999人", "color": "#FF6666",
"min": 1000, "max": 9999, "label": "1000-9999人", "color": "#CC3333",
"min": 10000, "label": "10000以上", "color": "#990033",
]
)
)
map.render("1.html")
结果是
这样就可以了
再解释一下颜色的设置
这样就可以查询相应的颜色
二.疫情地图——国内疫情地图
1.案例效果
演示
利用json在线在线解析工具可以看到
那么我们就可以知道该怎么去提取
#从字典中取出省份数据
province_data_list=data_dict["areaTree"][0]["children"]
代码
import json
from pyecharts.charts import Map
from pyecharts.options import *
#读取文件
f=open("D:/疫情.txt","r",encoding="utf-8")
data=f.read()
#关闭文件
f.close()
#获取各省数据
#将字符串json转化为python的字典
data_dict=json.loads(data)
#从字典中取出省份数据
province_data_list=data_dict["areaTree"][0]["children"]
#组装每个省份和确诊人数为元组,并各个省的数据都封装如列表
data_list=[]#绘图需要用到数据列表
for province_data in province_data_list:
province_name=province_data["name"]#省份名称
province_confirm=province_data["total"]["confirm"]#确诊人数
data_list.append((province_name,province_confirm))#这里注意列表里面嵌套的是元组
print(f"type(data_list)\\ndata_list")
#创建地图对象
map=Map()
#添加数据
map.add("各省份确诊人数",data_list,"china")
#设置全局配置,定制分段到1视觉映射
map.set_global_opts(
title_opts=TitleOpts("全国疫情地图",pos_left="center",pos_bottom="1%"),
visualmap_opts=VisualMapOpts(
is_show=True,#是否显示
is_piecewise=True,#是否分段
pieces=[
"min": 1, "max": 9, "label": "1-9人", "color": "#CCFFFF",
"min": 10, "max": 99, "label": "10-99人", "color": "#FFFF99",
"min": 100, "max": 499, "label": "100-499人", "color": "#FF9966",
"min": 500, "max": 999, "label": "500-999人", "color": "#FF6666",
"min": 1000, "max": 9999, "label": "1000-9999人", "color": "#CC3333",
"min": 10000, "label": "10000以上", "color": "#990033",
]
)
)
map.render("全国疫情地图.html")
结果是
三.疫情地图——省级疫情地图
以河南省为例
代码
import json
from pyecharts.charts import Map
from pyecharts.options import *
f=open("D:/疫情.txt","r",encoding="utf-8")
data=f.read()
#关闭文件
f.close()
#json数据转化为python字典
data_dict=json.loads(data)
#取到河南省数据
cities_data=data_dict["areaTree"][0]["children"][3]["children"]
#准备数据为元组并放入list
data_list=[]
for city_data in cities_data:
city_name=city_data["name"]+"市"
city_confirm=city_data["total"]["confirm"]
data_list.append((city_name,city_confirm))
#构建地图
map=Map()
map.add("河南省疫情分布",data_list,"河南")
#设置全局选项
map.set_global_opts(
title_opts=TitleOpts(title="河南疫情地图"),
visualmap_opts=VisualMapOpts(
is_show=True,#是否显示
is_piecewise=True,#是否分段
pieces=[
"min": 1, "max": 9, "label": "1-9人", "color": "#CCFFFF",
"min": 10, "max": 99, "label": "10-99人", "color": "#FFFF99",
"min": 100, "max": 499, "label": "100-499人", "color": "#FF9966",
"min": 500, "max": 999, "label": "500-999人", "color": "#FF6666",
"min": 1000, "max": 9999, "label": "1000-9999人", "color": "#CC3333",
"min": 10000, "label": "10000以上", "color": "#990033",
]
)
)
map.render("河南疫情地图.html")
结果是
有个问题:济源市因为数据集中没有相应数据,所以需要我们手动加上去
这样就可以了
结果是
四.数据集
链接:https://pan.baidu.com/s/1wX9hTrpwM42FAwqyb6O7fg
提取码:1234
以上是关于「Python」使用Pyecharts生成疫情分布地图的主要内容,如果未能解决你的问题,请参考以下文章