opencv mat的数据类型CV_32FC1变成CV_8UC1
Posted
tags:
篇首语:本文由小常识网(cha138.com)小编为大家整理,主要介绍了opencv mat的数据类型CV_32FC1变成CV_8UC1相关的知识,希望对你有一定的参考价值。
整个项目的结构图:编写DetectFaceDemo.java,代码如下:
[java] view
plaincopyprint?
package com.njupt.zhb.test;
import org.opencv.core.Core;
import org.opencv.core.Mat;
import org.opencv.core.MatOfRect;
import org.opencv.core.Point;
import org.opencv.core.Rect;
import org.opencv.core.Scalar;
import org.opencv.highgui.Highgui;
import org.opencv.objdetect.CascadeClassifier;
//
// Detects faces in an image, draws boxes around them, and writes the results
// to "faceDetection.png".
//
public class DetectFaceDemo
public void run()
System.out.println("\nRunning DetectFaceDemo");
System.out.println(getClass().getResource("lbpcascade_frontalface.xml").getPath());
// Create a face detector from the cascade file in the resources
// directory.
//CascadeClassifier faceDetector = new CascadeClassifier(getClass().getResource("lbpcascade_frontalface.xml").getPath());
//Mat image = Highgui.imread(getClass().getResource("lena.png").getPath());
//注意:源程序的路径会多打印一个‘/’,因此总是出现如下错误
/*
* Detected 0 faces Writing faceDetection.png libpng warning: Image
* width is zero in IHDR libpng warning: Image height is zero in IHDR
* libpng error: Invalid IHDR data
*/
//因此,我们将第一个字符去掉
String xmlfilePath=getClass().getResource("lbpcascade_frontalface.xml").getPath().substring(1);
CascadeClassifier faceDetector = new CascadeClassifier(xmlfilePath);
Mat image = Highgui.imread(getClass().getResource("we.jpg").getPath().substring(1));
// Detect faces in the image.
// MatOfRect is a special container class for Rect.
MatOfRect faceDetections = new MatOfRect();
faceDetector.detectMultiScale(image, faceDetections);
System.out.println(String.format("Detected %s faces", faceDetections.toArray().length));
// Draw a bounding box around each face.
for (Rect rect : faceDetections.toArray())
Core.rectangle(image, new Point(rect.x, rect.y), new Point(rect.x + rect.width, rect.y + rect.height), new Scalar(0, 255, 0));
// Save the visualized detection.
String filename = "faceDetection.png";
System.out.println(String.format("Writing %s", filename));
Highgui.imwrite(filename, image);
package com.njupt.zhb.test;
import org.opencv.core.Core;
import org.opencv.core.Mat;
import org.opencv.core.MatOfRect;
import org.opencv.core.Point;
import org.opencv.core.Rect;
import org.opencv.core.Scalar;
import org.opencv.highgui.Highgui;
import org.opencv.objdetect.CascadeClassifier;
//
// Detects faces in an image, draws boxes around them, and writes the results
// to "faceDetection.png".
//
public class DetectFaceDemo
public void run()
System.out.println("\nRunning DetectFaceDemo");
System.out.println(getClass().getResource("lbpcascade_frontalface.xml").getPath());
// Create a face detector from the cascade file in the resources
// directory.
//CascadeClassifier faceDetector = new CascadeClassifier(getClass().getResource("lbpcascade_frontalface.xml").getPath());
//Mat image = Highgui.imread(getClass().getResource("lena.png").getPath());
//注意:源程序的路径会多打印一个‘/’,因此总是出现如下错误
/*
* Detected 0 faces Writing faceDetection.png libpng warning: Image
* width is zero in IHDR libpng warning: Image height is zero in IHDR
* libpng error: Invalid IHDR data
*/
//因此,我们将第一个字符去掉
String xmlfilePath=getClass().getResource("lbpcascade_frontalface.xml").getPath().substring(1);
CascadeClassifier faceDetector = new CascadeClassifier(xmlfilePath);
Mat image = Highgui.imread(getClass().getResource("we.jpg").getPath().substring(1));
// Detect faces in the image.
// MatOfRect is a special container class for Rect.
MatOfRect faceDetections = new MatOfRect();
faceDetector.detectMultiScale(image, faceDetections);
System.out.println(String.format("Detected %s faces", faceDetections.toArray().length));
// Draw a bounding box around each face.
for (Rect rect : faceDetections.toArray())
Core.rectangle(image, new Point(rect.x, rect.y), new Point(rect.x + rect.width, rect.y + rect.height), new Scalar(0, 255, 0));
// Save the visualized detection.
String filename = "faceDetection.png";
System.out.println(String.format("Writing %s", filename));
Highgui.imwrite(filename, image);
3.编写测试类:
[java] view
plaincopyprint?
package com.njupt.zhb.test;
public class TestMain
public static void main(String[] args)
System.out.println("Hello, OpenCV");
// Load the native library.
System.loadLibrary("opencv_java246");
new DetectFaceDemo().run();
//运行结果:
//Hello, OpenCV
//
//Running DetectFaceDemo
///E:/eclipse_Jee/workspace/JavaOpenCV246/bin/com/njupt/zhb/test/lbpcascade_frontalface.xml
//Detected 8 faces
//Writing faceDetection.png
package com.njupt.zhb.test;
public class TestMain
public static void main(String[] args)
System.out.println("Hello, OpenCV");
// Load the native library.
System.loadLibrary("opencv_java246");
new DetectFaceDemo().run();
//运行结果:
//Hello, OpenCV
//
//Running DetectFaceDemo
///E:/eclipse_Jee/workspace/JavaOpenCV246/bin/com/njupt/zhb/test/lbpcascade_frontalface.xml
//Detected 8 faces
//Writing faceDetection.png 参考技术A 新建一个CV_8UC1类型的矩阵,直接把原矩阵赋值就行
OpenCV 并从 OutputArrays 或 (Mat) 读取数据
【中文标题】OpenCV 并从 OutputArrays 或 (Mat) 读取数据【英文标题】:OpenCV and reading data from OutputArrays or (Mat) 【发布时间】:2020-01-31 07:14:37 【问题描述】:OpenCV 自己的 PnP 和 Rodrigues 公式函数存在一些问题。我认为它与cv::solvePnPRansac()
有关
cv::Mat w = cv::Mat::zeros(3,1,CV_32FC1);
cv::Mat t = cv::Mat::zeros(3,1,CV_32FC1);
std::vector<float> distortion = 0,0,0,0;
std::vector<cv::Point3f> tmp1 = eig_vec_to_cv3(pts);
std::vector<cv::Point2f> tmp2 = eig_vec_to_cv2(pixels);
cv::solvePnPRansac(tmp1, tmp2, eig_mat_2_cv(K),distortion, w, t,false, 100, 2.0f);
cv::Mat R_ = cv::Mat::zeros(3,3,CV_32FC1);
cv::Rodrigues(w,R_);
std::cout<<"R_"<<std::endl;
std::cout<<R_<<std::endl;
std::cout<<R_.at<float>(0,0)<<std::endl;
对于std::cout<<R_<<std::endl
,它看起来没问题,但R_.at<float>(0,0)
给出了一个垃圾号码,就像没有分配内存一样。 w
和 t
也是如此。
但是,如果我这样做:
cv::Mat w_ = cv::Mat(3,1,cv_32FC1);
w.at<float>(0,0) = 0.2;
w.at<float>(0,1) = 0.4;
w.at<float>(0,2) = 0.3;
cv::Rodrigues(w_,R_);
std::cout<<"R_"<<std::endl;
std::cout<<R_<<std::endl;
std::cout<<R_.at<float>(0,0)<<std::endl;
效果很好。
这是一个最小(非)工作示例:
#include <opencv2/calib3d.hpp>
#include <opencv2/opencv.hpp>
#include <vector>
int main()
cv::Mat w = cv::Mat(3,1,CV_32FC1);
cv::Mat t = cv::Mat(3,1, CV_32FC1);
std::vector<cv::Point3f> tmp1;
std::vector<cv::Point2f> tmp2;
for (int k = 0; k < 10; ++k)
cv::Point3f p1(0.2f+k, 0.3f-k, 7.5f-k);
cv::Point2f p2(3.2f*k, 4.5f/k);
tmp1.push_back(p1);
tmp2.push_back(p2);
cv::Mat K = cv::Mat::zeros(3,3,CV_32FC1);
K.at<float>(0,0) = 525.0;
K.at<float>(0,2) = 234.5;
K.at<float>(1,1) = 525;
K.at<float>(1,2) = 312.5;
K.at<float>(2,2) = 1.0f;
std::vector<float> distortion = 0,0,0,0;
cv::solvePnPRansac(tmp1, tmp2, K,distortion, w, t,false, 100, 2.0f);
std::cout<<w<<std::endl;
cv::Mat R = cv::Mat::zeros(3,3,CV_32FC1);
cv::Rodrigues(w,R);
std::cout<<R<<std::endl;
std::cout<<R.at<float>(0,0)<<std::endl;
return 0;
编译
g++ main.cpp -I /usr/local/include/opencv4/ -o test -L /usr/local/lib/ -lopencv_calib3d -lopencv_core
【问题讨论】:
【参考方案1】:原因是函数cv::Rodrigues
创建了CV_64FC1
类型的输出矩阵。因此,值必须按如下方式读取:
std::cout<<R.at<double>(0,0)<<std::endl;
即使我们将输出矩阵预先分配为任何其他类型(比如CV_32FC1
),它也会被cv::Rodrigues
重新分配为类型CV_64FC1
。
在我看来,OpenCV 文档对许多函数的输入和输出类型缺乏明确性。在这种情况下,必须通过打印Mat::type()
函数的返回值来确定输出类型。
【讨论】:
非常感谢,我认为 OpenCV 文档在很多方面都存在问题。特别是对于 python。 @El_Loco.. 确实如此。即使是主要语言 (C++) 也有一些模棱两可的文档。我想是时候开始为代码库做出贡献并改进其文档了。 :) @El_Loco.. 另外,如果它解决了您的问题,您可以考虑接受答案。 @sgarizvi 现在是贡献力量的好时机——OpenCV 黑客马拉松本周末开始! opencv.org/opencv-hackathon-is-coming以上是关于opencv mat的数据类型CV_32FC1变成CV_8UC1的主要内容,如果未能解决你的问题,请参考以下文章
如何在opencv中将图像从CV_8UC1转换为CV_32FC1类型?