什么是二进制?
Posted
tags:
篇首语:本文由小常识网(cha138.com)小编为大家整理,主要介绍了什么是二进制?相关的知识,希望对你有一定的参考价值。
什么是二进制 八进制 十六进制? 知道告诉下!
谢谢了 急啊`
20世纪被称作第三次科技革命的重要标志之一的计算机的发明与应用,其运算模式正是二进制。它不但证明了莱布尼兹的原理是正确的,同时也证明了《易经》数理学是很了不起的。
二进制数
一、二进制数的表示法
二进制是计算技术中广泛采用的一种数制。二进制数是用0和1两个数码来表示的数。它的基数为2,进位规则是“逢二进一”,借位规则是“借一当二”。二进制数也是采用位置计数法,其位权是以2为底的幂。例如二进制数110.11,其权的大小顺序为22、21、20、2-1、2-2。对于有n位整数,m位小数的二进制数用加权系数展开式表示,可写为:
(N)2=an-1×2n-1+an-2×2n-2+……+a1×21+a0×20+a-1×2-1+a-2×2-2
+……+a-m×2-m=
式中aj表示第j位的系数,它为0和1中的某一个数。
二进制数一般可写为:(an-1an-2…a1a0.a-1a-2…a-m)2。
【例1102】将二进制数111.01写成加权系数的形式。
解: (111.01)2=1×22+l×21+1×20+1×2-2
二、二进制数的加法和乘法运算
二进制数的算术运算的基本规律和十进制数的运算十分相似。最常用的是加法运算和乘法运算。
1. 二进制加法
有四种情况: 0+0=0
0+1=1
1+0=1
1+1=0 进位为1
【例1103】求 (1101)2+(1011)2 的和
解: 1 1 0 1
+ 1 0 1 1
1 1 0 0 0
2. 二进制乘法
有四种情况: 0×0=0
1×0=0
0×1=0
1×1=1
【例1104】求 (1110)2 乘(101)2 之积
解: 1 1 1 0
× 1 0 1
1 1 1 0
0 0 0 0
+ 1 1 1 0
1 0 0 0 1 1 0
莱布尼茨的二进制
在德国图灵根著名的郭塔王宫图书馆(Schlossbiliothke zu Gotha)保存着一份弥足珍贵的手稿,其标题为:
“1与0,一切数字的神奇渊源。这是造物的秘密美妙的典范,因为,一切无非都来自上帝。”
这是德国天才大师莱布尼茨(Gottfried Wilhelm Leibniz,1646 - 1716)的手迹。但是,关于这个神奇美妙的数字系统,莱布尼茨只有几页异常精炼的描述。用现代人熟悉的话,我们可以对二进制作如下的解释:
2^0 = 1
2^1 = 2
2^2 = 4
2^3 = 8
2^4 = 16
2^5 = 32
2^6 = 64
2^7 = 128
以此类推。
把等号右边的数字相加,就可以获得任意一个自然数。我们只需要说明:采用了2的几次方,而舍掉了2几次方。二进制的表述序列都从右边开始,第一位是2的0次方,第二位是2的1次方,第三位时2的2次方……,以此类推。一切采用2的成方的位置,我们就用“1”来标志,一切舍掉2的成方的位置,我们就用“0”来标志。这样,我们就得到了下边这个序列:
1 1 1 0 0 1 0 1
2的7次方
2的6次方
2的5次方
0
0
2的2次方
0
2的0次方
128
+
64
+
32
+
0
+
0
+
4
+
0
+
1
=
229
在这个例子中,十进制的数字“229”就可以表述为二进制的“11100101”。任何一个二进制数字最左边的一位都是“1”。通过这个方法,用1到9和0这十个数字表述的整个自然数列都可用0和1两个数字来代替。0与1这两个数字很容易被电子化:有电流就是1;没有电流就是0。这就整个现代计算机技术的根本秘密所在。
莱布尼茨和八卦
这份手稿完成的时候,莱布尼茨五十岁。毫无疑问,他是这个作为现代计算机技术的基础的二进制的发明者。而且,在此之前,或者与他同时,似乎没有一个人想到过这个问题。这在数学史上是很罕见的。
莱布尼茨不仅发明了二进制,而且赋予了它宗教的内涵。他在写给当时在中国传教的法国耶稣士会牧师布维(Joachim Bouvet,1662 - 1732)的信中说:
“第一天的伊始是1,也就是上帝。第二天的伊始是2,……到了第七天,一切都有了。所以,这最后的一天也是最完美的。因为,此时世间的一切都已经被创造出来了。因此它被写作‘7’,也就是‘111’(二进制中的111等于十进制的7),而且不包含0。只有当我们仅仅用0和1来表达这个数字时,才能理解,为什么第七天才最完美,为什么7是神圣的数字。特别值得注意的是它(第七天)的特征(写作二进制的111)与三位一体的关联。”
布维是一位汉学大师,他对中国的介绍是17、18世纪欧洲学界中国热最重要的原因之一。布维是莱布尼茨的好朋友,一直与他保持着频繁的书信往来。莱布尼茨曾将很多布维的文章翻译成德文,发表刊行。恰恰是布维向莱布尼茨介绍了《周易》和八卦的系统,并说明了《周易》在中国文化中的权威地位。
八卦是由八个符号组构成的占卜系统,而这些符号分为连续的与间断的横线两种。这两个后来被称为“阴”、“阳”的符号,在莱布尼茨眼中,就是他的二进制的中国翻版。他感到这个来自古老中国文化的符号系统与他的二进制之间的关系实在太明显了,因此断言:二进制乃是具有世界普遍性的、最完美的逻辑语言。
另一个可能引起莱布尼茨对八卦的兴趣的人是坦泽尔(Wilhelm Ernst Tentzel),他当时是图灵根大公爵硬币珍藏室的领导,也是莱布尼茨的好友之一。在他主管的这个硬币珍藏中有一枚印有八卦符号的硬币。
八卦与二进制
今天,西方学界已经获得了普遍的共识:八卦与二进制没有直接的关系。首先,中国的数字系统是十进制的。其次,依照我们今天掌握的史料,秦、汉以上,中国还没有--在莱布尼茨的二进制意义上的--“零”的概念。
假如说《周易》中系辞的部分讲的阴、阳化生万物就是莱布尼茨所说的0、1为万物之源,这是难以成立的。今本《周易》大概可以分成三个部分,第一是卦,第二是爻,第三是传,即所谓的“十翼”。其中,卦的部分应该是最古老的。从《尚书》、《周礼》、《左传》、《国语》等先秦文献,以及后来的考古发掘,我们对西周初年的龟卜有了初步的认识。但是,对于“易卜”我们几乎没有任何详细可靠的资料。《周易》中的卦也许就是韩宣子所见到的“易象”。无论如何,我们在卦、爻中基本上看不到阴、阳的影子。阴、阳的系统基本上是在《易传》中得到完善的发展与表述的,尽管它的渊源一定早过《易传》。而《易传》显然是十进制的体系。通过《汉书·律历志》的记载,我们不仅可以知道,在《周易》大行于世的时代历算使用的是十进制,而且其中关键数不是1,更不是0,而是2(阴、阳)和3(天、地、人)。(相见拙文《儒家对数学几何的热爱》)
另外,道哲学体系中的重要概念“无”与莱布尼茨的0没有任何直接关系。罗素在《数理哲学道论》中将“0”解释为:一切没有分子的类的类。这正是莱布尼茨心目中的“零”。而罗素的这个解释正是受到了著名德国语言哲学家弗莱格(Gottlob Frege,1848-1925)的著作Grundlage der Arithmetik(《算术基础》)的启发。弗莱格、罗素的数论体系中的“零”换成中国话说,就是一切“无”的总称。而道哲学中的“无”不是却不是很多“无”的总和,而是那一个特定的“无”,是那一个“道”的本质。
简单地说,莱布尼茨以来三百年间,西方的科学家与哲学家作过无数的研究,都不能发现二进制与八卦有什么实质性的联系。而在我们中国,秦汉以下,除去利用对八卦特殊的解释建立哲学系统的努力,我们也基本上看不到对它具有说服力的解释。
计算机内部采用二进制的原因
(1)技术实现简单,计算机是由逻辑电路组成,逻辑电话通常只有两个状态,开关的接通与断开,这两种状态正好可以用“1”和“0”表示。
(2)简化运算规则:两个二进制数和、积运算组合各有三种,运算规则简单,有利于简化计算机内部结构,提高运算速度。
(3)适合逻辑运算:逻辑代数是逻辑运算的理论依据,二进制只有两个数码,正好与逻辑代数中的“真”和“假”相吻合。
(4)易于进行转换,二进制与十进制数易于互相转换。
处理数据库二进制数据
我们在使用数据库时,有时会用到图像或其它一些二进制数据,这个时候你们就必须使用getchunk这个方法来从表中获得二进制大对象,我们也可以使用AppendChunk来把数据插入到表中.
我们平时来取数据是这样用的!
Getdata=rs("fieldname")
而取二进制就得这样
size=rs("fieldname").acturalsize
getdata=rs("fieldname").getchunk(size)
我们从上面看到,我们取二进制数据必须先得到它的大小,然后再搞定它,这个好像是ASP中处理二进制数据的常用方法,我们在获取从客户端传来的所有数据时,也是用的这种方法,嘿嘿大家可要记住O.
下面我们也来看看是怎样将二进制数据加入数据库
rs("fieldname").appendchunk binarydata
一步搞定!
另外,使用getchunk和appendchunk将数据一步一步的取出来!
下面演示一个取数据的例子!
Addsize=2
totalsize=rs("fieldname").acturalsize
offsize=0
Do Where offsize Binarydata=rs("fieldname").getchunk(offsize)
data=data&Binarydata
offsize=offsize+addsize
Loop
当这个程序运行完毕时,data就是我们取出的数据. 参考技术A 我的理解是:
二进制就是2倍
八进制就是8倍
十六进制就是16倍
(某个数的)比如128二进位是256
128八进位是1024 参考技术B 我们常用的是十进制,也就是满十进一。01234567889-10。二进制就是满2进1。0,1,10,11,100。 参考技术C 咱们的十进制是每十进一,而二进制是每2进一,八、十六进制同理。
详细资料:
二进制http://baike.baidu.com/view/18536.htm
八进制http://baike.baidu.com/view/234126.htm
十六进制http://baike.baidu.com/view/230306.htm 参考技术D 二进制 就是只有 0和1 逢2进1 依此类推
内存地址是什么
逻辑上,内存是一个有序字节组成的数组,每个字节有唯一的内存地址,那这个地址到底是啥。
cpu通过数据,地址,控制总线完成与内存的交互。地址总线一共有32根,每一根的值是1或0。内存最基本的单位是字节,8个二进制。
内存地址是对每一个字节的映射。换句话说,是32位二进制数相对一个8位二进制数的映射。(数组是什么,是一个整数对某一个数组元素的映射)
内存地址是地址总线上所有位构成的一个值。用这个值可以操纵内存中唯一的一个字节。
如何快速有效的对字节寻址呢?最早最通用的cpu(80x86)中应用了一种称为段的寻址技术(现在仍然使用),就是对所有的字节分段访问。
在采用分段技术之前,cpu是直接面向内存访问,cpu的针脚上的值就是地址的值。分段后,cpu面向的是段地址和段内偏移地址(针脚上的值不再是直接的内存地址了),之后由某一个部件根据cpu给出的段地址和段内偏移地址换算出真正的内存地址。
既然本来就可以访问到内存,由何必费那么大劲搞一个分段的寻址方式呢? 跑一下题,描述一下分段技术应用的上下文。分段的出现在操作系统中,没有分段就没有操作系统。在此之前,还没有一个现代意义上的操作系统(之前都是批处理作业,不对内存划分空间)。再然后就能有汇编语言,有编译器,有高级程序语言,有更好看的窗口桌面,能有更好玩的游戏...
分段提供了最基础的对内存的保护能力。如果不分段,没有任何方式不让一条指令访问某一个内存区域(程序员写的指令能读写任意一个内存地址内容,想想这样的后果)。那分段机制如何保护内存呢。
在80x86中,段地址又叫段选择符,共16位,存放在CS、DS、ES、SS、FS、GS寄存器中,其中起作用的有14位。段偏移地址有32位。在操作系统层面,保存着一张大表(段描述符表,也叫GDT表,存在内存,在操作系统初始化时创建),这个表的的索引就是段地址,或者段选择符(终于知道为什么会叫选择了)。程序中的某条指令给出一个逻辑地址(就是段地址和段内偏移地址),通过段地址查GDT表,就能知道这个段是干啥的,这个段多大,这个段从哪开始,从哪结束,更重要的是它的访问权限,操作系统会比对正在运行程序指令的状态权限,来决定这条指令能不能访问该地址。通过段地址查GDT表,知道段的首地址,再加上段内偏移量,就可以得出物理内存地址了。
图片来自杨炯老师的《linux内核完全剖析》第五版
pdf下载地址:http://oldlinux.org/download/CLK-5.0-WithCover.pdf
以上是关于什么是二进制?的主要内容,如果未能解决你的问题,请参考以下文章