STM32F4 ADC模块使用不同DMA模式的区别和对比

Posted

tags:

篇首语:本文由小常识网(cha138.com)小编为大家整理,主要介绍了STM32F4 ADC模块使用不同DMA模式的区别和对比相关的知识,希望对你有一定的参考价值。

这些细节在STM32F4的原厂参考手册中没有说明,只是很简短的列了一下。
我是查看ST前几天刚发布的接口库才最后弄明白的,不敢独享!

1、STM32F4有3个独立的ADC单元,性能强劲,可以独立使用,也可以联合使用它们。
联合使用在参考手册中叫Interleave模式,最大的目的是加倍提升采样速度。

2、采样速度大幅提高以后,就需要使用DMA来配合提取采样结果,从而发挥STM32F4
ADC模块的最大效能。

3、ADC模块使用DMA有4种模式可选,默认模式和模式1没有什么特别之处。
最有意思的是模式2和模式3:

模式2可以选择多达3个ADC模块工作于Interleave模式,ADC速度从单一模块的
2.4Msps暴涨为7.2Msps,而且还是12-bit的分辨率!唯一的要求是每完成2次转换,
允许DMA一次性取走2个采样值。

模式3跟模式2类同,但要求ADC模块的采样率为8-bit或6-bit,由于转换时间要比
12-bit时短,所以速度更快,适用于速度要求更快,但精度要求较低的场合。
比如用2个ADC模块很容易就可以做到6Msps的速率,而且2次的结果可以存为halfword,
经由DMA取走,耗用内存也比模式2来的少。
剩下的那一个ADC模块也不用闲着,可以工作于其他设定(比如:高精度)的模式。

一句话,STM32F4似灰常强滴。。。
更多猛招,敬请留意后续文章。。。

ST的ADC功能确实是比较强的,激活DMA DUAL Circular Buffer以后,可以利用FPU单元的DSP指令配合前台信号采集,在后台同步完成实时信号分析。简单的说,原先要用200MIPS以下的DSP来做的事情,STM32F4都有机会取代,性价比超强。
参考技术A 可能有两方面的原因:
1. adc数据采集的不对,也就是说adc的配置错误。
2. dma在取数据时发生错误,也就是dma的配置错误。
建议自己检查一下程序。

STM32 无法让 DMA + ADC 运行。 (NUCLEO-G431KB)

【中文标题】STM32 无法让 DMA + ADC 运行。 (NUCLEO-G431KB)【英文标题】:STM32 Having problems to get DMA + ADC to run. (NUCLEO-G431KB) 【发布时间】:2021-12-19 17:28:39 【问题描述】:

我做了一个新的 C 项目:

制作了一个 ADC_1 通道_1

启用连续转换模式

启用 DMA Continoise 请求

制作了一个DMA通道

创建的代码添加了一个缓冲区,启动了 DMA 并在 while 循环中添加了一个延迟。

当我现在让它在我的 NUCLEO-G431KB 上运行时。并在延迟处设置断点。看看我的缓冲区,它充满了零。 因此我猜想 DMA 不能正常工作,因为当我使用没有 DMA 的 ADC 并只轮询值时,我得到了不同的读数。 (我在这个引脚上连接了一个 0.61V 的电压源)

此外,从不调用两个 ADC 回调。

void HAL_ADC_ConvHalfCpltCallback(ADC_HandleTypeDef* hadc) 
  HAL_GPIO_WritePin(LD2_GPIO_Port, LD2_Pin, GPIO_PIN_SET);


// Called when buffer is completely filled
void HAL_ADC_ConvCpltCallback(ADC_HandleTypeDef* hadc) 
  HAL_GPIO_WritePin(LD2_GPIO_Port, LD2_Pin, GPIO_PIN_RESET);

我检查了它们的源代码,它们似乎没有被启用并算作遗留代码。

/* USER CODE BEGIN Header */
/**
  ******************************************************************************
  * @file           : main.c
  * @brief          : Main program body
  ******************************************************************************
  * @attention
  *
  * <h2><center>&copy; Copyright (c) 2021 STMicroelectronics.
  * All rights reserved.</center></h2>
  *
  * This software component is licensed by ST under BSD 3-Clause license,
  * the "License"; You may not use this file except in compliance with the
  * License. You may obtain a copy of the License at:
  *                        opensource.org/licenses/BSD-3-Clause
  *
  ******************************************************************************
  */
/* USER CODE END Header */
/* Includes ------------------------------------------------------------------*/
#include "main.h"

/* Private includes ----------------------------------------------------------*/
/* USER CODE BEGIN Includes */

/* USER CODE END Includes */

/* Private typedef -----------------------------------------------------------*/
/* USER CODE BEGIN PTD */

/* USER CODE END PTD */

/* Private define ------------------------------------------------------------*/
/* USER CODE BEGIN PD */
#define ADC_BUF_LEN 10
/* USER CODE END PD */

/* Private macro -------------------------------------------------------------*/
/* USER CODE BEGIN PM */

/* USER CODE END PM */

/* Private variables ---------------------------------------------------------*/
ADC_HandleTypeDef hadc1;
DMA_HandleTypeDef hdma_adc1;

/* USER CODE BEGIN PV */
volatile uint16_t adc_buf[ADC_BUF_LEN];
/* USER CODE END PV */

/* Private function prototypes -----------------------------------------------*/
void SystemClock_Config(void);
static void MX_GPIO_Init(void);
static void MX_ADC1_Init(void);
static void MX_DMA_Init(void);
/* USER CODE BEGIN PFP */

/* USER CODE END PFP */

/* Private user code ---------------------------------------------------------*/
/* USER CODE BEGIN 0 */

/* USER CODE END 0 */

/**
  * @brief  The application entry point.
  * @retval int
  */
int main(void)

  /* USER CODE BEGIN 1 */

  /* USER CODE END 1 */

  /* MCU Configuration--------------------------------------------------------*/

  /* Reset of all peripherals, Initializes the Flash interface and the Systick. */
  HAL_Init();

  /* USER CODE BEGIN Init */

  /* USER CODE END Init */

  /* Configure the system clock */
  SystemClock_Config();

  /* USER CODE BEGIN SysInit */

  /* USER CODE END SysInit */

  /* Initialize all configured peripherals */
  MX_GPIO_Init();
  MX_ADC1_Init();
  MX_DMA_Init();
  /* USER CODE BEGIN 2 */
  HAL_ADC_Start_DMA(&hadc1, (uint32_t*)adc_buf, ADC_BUF_LEN);
  /* USER CODE END 2 */

  /* Infinite loop */
  /* USER CODE BEGIN WHILE */
  while (1)
  
    /* USER CODE END WHILE */
      HAL_Delay(1000);
    /* USER CODE BEGIN 3 */
  
  /* USER CODE END 3 */


/**
  * @brief System Clock Configuration
  * @retval None
  */
void SystemClock_Config(void)

  RCC_OscInitTypeDef RCC_OscInitStruct = 0;
  RCC_ClkInitTypeDef RCC_ClkInitStruct = 0;
  RCC_PeriphCLKInitTypeDef PeriphClkInit = 0;

  /** Configure the main internal regulator output voltage
  */
  HAL_PWREx_ControlVoltageScaling(PWR_REGULATOR_VOLTAGE_SCALE1_BOOST);
  /** Initializes the RCC Oscillators according to the specified parameters
  * in the RCC_OscInitTypeDef structure.
  */
  RCC_OscInitStruct.OscillatorType = RCC_OSCILLATORTYPE_HSI;
  RCC_OscInitStruct.HSIState = RCC_HSI_ON;
  RCC_OscInitStruct.HSICalibrationValue = RCC_HSICALIBRATION_DEFAULT;
  RCC_OscInitStruct.PLL.PLLState = RCC_PLL_ON;
  RCC_OscInitStruct.PLL.PLLSource = RCC_PLLSOURCE_HSI;
  RCC_OscInitStruct.PLL.PLLM = RCC_PLLM_DIV4;
  RCC_OscInitStruct.PLL.PLLN = 85;
  RCC_OscInitStruct.PLL.PLLP = RCC_PLLP_DIV2;
  RCC_OscInitStruct.PLL.PLLQ = RCC_PLLQ_DIV2;
  RCC_OscInitStruct.PLL.PLLR = RCC_PLLR_DIV2;
  if (HAL_RCC_OscConfig(&RCC_OscInitStruct) != HAL_OK)
  
    Error_Handler();
  
  /** Initializes the CPU, AHB and APB buses clocks
  */
  RCC_ClkInitStruct.ClockType = RCC_CLOCKTYPE_HCLK|RCC_CLOCKTYPE_SYSCLK
                              |RCC_CLOCKTYPE_PCLK1|RCC_CLOCKTYPE_PCLK2;
  RCC_ClkInitStruct.SYSCLKSource = RCC_SYSCLKSOURCE_PLLCLK;
  RCC_ClkInitStruct.AHBCLKDivider = RCC_SYSCLK_DIV1;
  RCC_ClkInitStruct.APB1CLKDivider = RCC_HCLK_DIV1;
  RCC_ClkInitStruct.APB2CLKDivider = RCC_HCLK_DIV1;

  if (HAL_RCC_ClockConfig(&RCC_ClkInitStruct, FLASH_LATENCY_4) != HAL_OK)
  
    Error_Handler();
  
  /** Initializes the peripherals clocks
  */
  PeriphClkInit.PeriphClockSelection = RCC_PERIPHCLK_ADC12;
  PeriphClkInit.Adc12ClockSelection = RCC_ADC12CLKSOURCE_SYSCLK;
  if (HAL_RCCEx_PeriphCLKConfig(&PeriphClkInit) != HAL_OK)
  
    Error_Handler();
  


/**
  * @brief ADC1 Initialization Function
  * @param None
  * @retval None
  */
static void MX_ADC1_Init(void)


  /* USER CODE BEGIN ADC1_Init 0 */

  /* USER CODE END ADC1_Init 0 */

  ADC_MultiModeTypeDef multimode = 0;
  ADC_ChannelConfTypeDef sConfig = 0;

  /* USER CODE BEGIN ADC1_Init 1 */

  /* USER CODE END ADC1_Init 1 */
  /** Common config
  */
  hadc1.Instance = ADC1;
  hadc1.Init.ClockPrescaler = ADC_CLOCK_SYNC_PCLK_DIV4;
  hadc1.Init.Resolution = ADC_RESOLUTION_12B;
  hadc1.Init.DataAlign = ADC_DATAALIGN_RIGHT;
  hadc1.Init.GainCompensation = 0;
  hadc1.Init.ScanConvMode = ADC_SCAN_DISABLE;
  hadc1.Init.EOCSelection = ADC_EOC_SINGLE_CONV;
  hadc1.Init.LowPowerAutoWait = DISABLE;
  hadc1.Init.ContinuousConvMode = ENABLE;
  hadc1.Init.NbrOfConversion = 1;
  hadc1.Init.DiscontinuousConvMode = DISABLE;
  hadc1.Init.ExternalTrigConv = ADC_SOFTWARE_START;
  hadc1.Init.ExternalTrigConvEdge = ADC_EXTERNALTRIGCONVEDGE_NONE;
  hadc1.Init.DMAContinuousRequests = ENABLE;
  hadc1.Init.Overrun = ADC_OVR_DATA_OVERWRITTEN;
  hadc1.Init.OversamplingMode = DISABLE;
  if (HAL_ADC_Init(&hadc1) != HAL_OK)
  
    Error_Handler();
  
  /** Configure the ADC multi-mode
  */
  multimode.Mode = ADC_MODE_INDEPENDENT;
  if (HAL_ADCEx_MultiModeConfigChannel(&hadc1, &multimode) != HAL_OK)
  
    Error_Handler();
  
  /** Configure Regular Channel
  */
  sConfig.Channel = ADC_CHANNEL_1;
  sConfig.Rank = ADC_REGULAR_RANK_1;
  sConfig.SamplingTime = ADC_SAMPLETIME_2CYCLES_5;
  sConfig.SingleDiff = ADC_SINGLE_ENDED;
  sConfig.OffsetNumber = ADC_OFFSET_NONE;
  sConfig.Offset = 0;
  if (HAL_ADC_ConfigChannel(&hadc1, &sConfig) != HAL_OK)
  
    Error_Handler();
  
  /* USER CODE BEGIN ADC1_Init 2 */

  /* USER CODE END ADC1_Init 2 */



/**
  * Enable DMA controller clock
  */
static void MX_DMA_Init(void)


  /* DMA controller clock enable */
  __HAL_RCC_DMAMUX1_CLK_ENABLE();
  __HAL_RCC_DMA1_CLK_ENABLE();

  /* DMA interrupt init */
  /* DMA1_Channel1_IRQn interrupt configuration */
  HAL_NVIC_SetPriority(DMA1_Channel1_IRQn, 0, 0);
  HAL_NVIC_EnableIRQ(DMA1_Channel1_IRQn);



/**
  * @brief GPIO Initialization Function
  * @param None
  * @retval None
  */
static void MX_GPIO_Init(void)

  GPIO_InitTypeDef GPIO_InitStruct = 0;

  /* GPIO Ports Clock Enable */
  __HAL_RCC_GPIOA_CLK_ENABLE();
  __HAL_RCC_GPIOB_CLK_ENABLE();

  /*Configure GPIO pin Output Level */
  HAL_GPIO_WritePin(LD2_GPIO_Port, LD2_Pin, GPIO_PIN_RESET);

  /*Configure GPIO pin : LD2_Pin */
  GPIO_InitStruct.Pin = LD2_Pin;
  GPIO_InitStruct.Mode = GPIO_MODE_OUTPUT_PP;
  GPIO_InitStruct.Pull = GPIO_NOPULL;
  GPIO_InitStruct.Speed = GPIO_SPEED_FREQ_LOW;
  HAL_GPIO_Init(LD2_GPIO_Port, &GPIO_InitStruct);



/* USER CODE BEGIN 4 */
void HAL_ADC_ConvHalfCpltCallback(ADC_HandleTypeDef* hadc) 
  HAL_GPIO_WritePin(LD2_GPIO_Port, LD2_Pin, GPIO_PIN_SET);


// Called when buffer is completely filled
void HAL_ADC_ConvCpltCallback(ADC_HandleTypeDef* hadc) 
  HAL_GPIO_WritePin(LD2_GPIO_Port, LD2_Pin, GPIO_PIN_RESET);

/* USER CODE END 4 */

/**
  * @brief  This function is executed in case of error occurrence.
  * @retval None
  */
void Error_Handler(void)

  /* USER CODE BEGIN Error_Handler_Debug */
  /* User can add his own implementation to report the HAL error return state */
  __disable_irq();
  while (1)
  
  
  /* USER CODE END Error_Handler_Debug */


#ifdef  USE_FULL_ASSERT
/**
  * @brief  Reports the name of the source file and the source line number
  *         where the assert_param error has occurred.
  * @param  file: pointer to the source file name
  * @param  line: assert_param error line source number
  * @retval None
  */
void assert_failed(uint8_t *file, uint32_t line)

  /* USER CODE BEGIN 6 */
  /* User can add his own implementation to report the file name and line number,
     ex: printf("Wrong parameters value: file %s on line %d\r\n", file, line) */
  /* USER CODE END 6 */

#endif /* USE_FULL_ASSERT */

/************************ (C) COPYRIGHT STMicroelectronics *****END OF FILE****/

【问题讨论】:

HAL 的美丽。应该是容易的,是困难的。使用寄存器和参考手册。至少你会知道你在做什么 在 STM32CubeMX 中,就像您展示的第一张图片一样,对于 ADC 配置,您是否在 ADC 配置的“NVIC 设置”选项卡下为其启用了全局中断?如果未选中,则可能是回调不进行的原因。回调可能永远不会被注册。 嗯,但我的意思是不是 HAL 不仅仅是设置寄存器吗?没有为 adcs 设置全局中断。明天我会在它们打开的情况下尝试它,但我不认为它会解决 DMA 问题。我猜DMA不需要这些中断。一般来说,我只是按照一些关于如何设置它的指南进行操作,这非常令人沮丧,所有通用解决方案都没有任何作用。 @klausDerRiese I just followed some guides on how to set this up 不要阅读任何“指南”,只阅读参考手册。了解它的工作原理并进行相应的编程。没有这方面的知识,就是voo-doo programming和cargo cult programming混在一起了 【参考方案1】:

您的代码似乎缺少两件事:

    ADC 时钟 - 不调用宏 __HAL_RCC_ADC12_CLK_ENABLE() ADC 输入引脚配置。 PB8(led?)配置好了,但是PA0在哪里?

当某些东西无法正常工作时 - 首先要检查的是时钟。

【讨论】:

【参考方案2】:

我在 STM32H7 上遇到过类似的问题。对我来说,交换初始化调用的调用顺序解决了这个问题。

Der 函数 MX_DMA_Init(); 应该在 MX_ADC1_Init(); 之前调用。

这可以在项目管理器>高级设置>生成的函数调用下的STM32QubeMX中设置

【讨论】:

这叫做voo-doo编程。我不知道为什么交换工作 - 但我会尝试直到我得到一个“工作”的配置

以上是关于STM32F4 ADC模块使用不同DMA模式的区别和对比的主要内容,如果未能解决你的问题,请参考以下文章

带有 DMA 7 通道常规组的 STM32F4 ADC 不工作

STM32F7:ADC DMA 传输只工作一次

STM32 ADC DMA。何时通知 MCU ADC 结束?

STM32F4 DMA接收串口定长数据,串口每秒来1000个数据,使用DMA-Normal模式

STM32F4 DMA接收串口定长数据,串口每秒来1000个数据,使用DMA-Normal模式

STM32 通过 I2C 发送 12 位 ADC