spark内存溢出及其解决方案
Posted
tags:
篇首语:本文由小常识网(cha138.com)小编为大家整理,主要介绍了spark内存溢出及其解决方案相关的知识,希望对你有一定的参考价值。
参考技术A 1、你在工作当中有遇到内存溢出问题吗?你是如何解决的?回答思路:先解释spark的内存模型,再分情况介绍不同情况下的解决方案。总体思想是根据内存模型找出不够的那一块内存,要么提升占比,要么整体增加。
oom通常出现在execution内存中,因为storage这块内存在放满之后,会直接丢弃内存中旧的数据,对性能有点影响但不会导致oom。存储内存和执行内存可以互相借用内存空间。
而spark的oom问题主要分为三种情况:
①map执行后的内存溢出
--场景:maptask所运行的executor内存溢出。
增加堆内内存,申请的堆外内存也会随之增加
--executor -memory
增加堆外内存
--conf spark.excutor.memoryoverhead 2048
默认申请的堆外内存是Executor内存的10%。
②shuffle后内存溢出
reduce task去map一边拉取数据,一边聚合。reduce端有一块聚合内存,executor memory *0.2
解决方案:增加reduce聚合内存的比例,设置spark.shuffle.memoryfraction
增加executor memory的大小
减少reduce task每次拉取的数据量,设置spark.reducer.maxSizeInFlight 24m
③driver内存溢出
--场景一:用户在Dirver端口生成大对象,比如创建了一个大的集合数据结构
解决思路:Ⅰ将大对象转换成Executor端加载,比如调用sc.textfile
Ⅱ评估大对象占用的内存,增加dirver-menory的值
--场景二:从Executor端收集数据(collect)回Dirver端
解决思路:Ⅰ本身不建议将大的数据从executor端,collect回来。建议将driver端对collect回来的数据所作的操作,转换成executor端rdd操作
Ⅱ若无法避免,估算collect需要的内存,相应增加driver-memory的值
--场景三:spark自身框架的消耗
主要由spark UI数据消耗,取决于作业的累计task个数
解决思路:Ⅰ从hdfs load的parition是自动计算,但在过滤之后,已经大大减少了数据量,此时可以缩小partitions。
Ⅱ通过参数spark.ui.retainedStages/spark.ui.retainedjobs控制(默认1000)
2、shuffle file not found可能是什么原因导致的报错?
产生该报错的原因可能是后一个stage的task从上一个stage的task所在的executor拉取数据,但是上一个stage正在执行GC,导致数据没有拉渠道,出现该错误。可以通过调整拉取的次数和间隔时间来避免此类事件发生。
val conf =new SparkConf()
.set("spark.shuffle.io.maxRetries","6')
.set("spark.shuffle.io.retrywait","60s")
3、栈溢出?
yarn-client模式下,Dirver是运行在本地机器上的,spark使用的jvm的permGen是128m,可能在client上测试没有问题
yarn-cluster模式下,Dirver是运行在集群的某个节点上,使用的是没有经过配置的默认配置,PermGen永久代大小为82m。运行时报栈溢出。
--解决方案:在spark-submit脚本中对相关参数进行设置
--conf spark.dirver.extraJavaOptions="-xx:PerSize=128M -xx:MaxPermSize=256m"
Spark面对OOM问题的解决方法及优化总结
转载请保持完整性并注明来源链接: http://blog.csdn.net/yhb315279058/article/details/51035631 Spark中的OOM问题不外乎以下两种情况- map执行中内存溢出
- shuffle后内存溢出
Spark 内存模型: Spark在一个Executor中的内存分为三块,一块是execution内存,一块是storage内存,一块是other内存。
- execution内存是执行内存,文档中说join,aggregate都在这部分内存中执行,shuffle的数据也会先缓存在这个内存中,满了再写入磁盘,能够减少IO。其实map过程也是在这个内存中执行的。
- storage内存是存储broadcast,cache,persist数据的地方。
- other内存是程序执行时预留给自己的内存。
内存溢出解决方法:
1. map过程产生大量对象导致内存溢出: 这种溢出的原因是在单个map中产生了大量的对象导致的,例如:rdd.map(x=>for(i <- 1 to 10000) yield i.toString),这个操作在rdd中,每个对象都产生了10000个对象,这肯定很容易产生内存溢出的问题。针对这种问题,在不增加内存的情况下,可以通过减少每个Task的大小,以便达到每个Task即使产生大量的对象Executor的内存也能够装得下。具体做法可以在会产生大量对象的map操作之前调用repartition方法,分区成更小的块传入map。例如:rdd.repartition(10000).map(x=>for(i <- 1 to 10000) yield i.toString)。 面对这种问题注意,不能使用rdd.coalesce方法,这个方法只能减少分区,不能增加分区,不会有shuffle的过程。
2.数据不平衡导致内存溢出: 数据不平衡除了有可能导致内存溢出外,也有可能导致性能的问题,解决方法和上面说的类似,就是调用repartition重新分区。这里就不再累赘了。
3.coalesce调用导致内存溢出: 这是我最近才遇到的一个问题,因为hdfs中不适合存小问题,所以Spark计算后如果产生的文件太小,我们会调用coalesce合并文件再存入hdfs中。但是这会导致一个问题,例如在coalesce之前有100个文件,这也意味着能够有100个Task,现在调用coalesce(10),最后只产生10个文件,因为coalesce并不是shuffle操作,这意味着coalesce并不是按照我原本想的那样先执行100个Task,再将Task的执行结果合并成10个,而是从头到位只有10个Task在执行,原本100个文件是分开执行的,现在每个Task同时一次读取10个文件,使用的内存是原来的10倍,这导致了OOM。解决这个问题的方法是令程序按照我们想的先执行100个Task再将结果合并成10个文件,这个问题同样可以通过repartition解决,调用repartition(10),因为这就有一个shuffle的过程,shuffle前后是两个Stage,一个100个分区,一个是10个分区,就能按照我们的想法执行。
4.shuffle后内存溢出: shuffle内存溢出的情况可以说都是shuffle后,单个文件过大导致的。在Spark中,join,reduceByKey这一类型的过程,都会有shuffle的过程,在shuffle的使用,需要传入一个partitioner,大部分Spark中的shuffle操作,默认的partitioner都是HashPatitioner,默认值是父RDD中最大的分区数,这个参数通过spark.default.parallelism控制(在spark-sql中用spark.sql.shuffle.partitions) , spark.default.parallelism参数只对HashPartitioner有效,所以如果是别的Partitioner或者自己实现的Partitioner就不能使用spark.default.parallelism这个参数来控制shuffle的并发量了。如果是别的partitioner导致的shuffle内存溢出,就需要从partitioner的代码增加partitions的数量。
5. standalone模式下资源分配不均匀导致内存溢出: 在standalone的模式下如果配置了--total-executor-cores 和 --executor-memory 这两个参数,但是没有配置--executor-cores这个参数的话,就有可能导致,每个Executor的memory是一样的,但是cores的数量不同,那么在cores数量多的Executor中,由于能够同时执行多个Task,就容易导致内存溢出的情况。这种情况的解决方法就是同时配置--executor-cores或者spark.executor.cores参数,确保Executor资源分配均匀。
6.在RDD中,共用对象能够减少OOM的情况: 这个比较特殊,这里说记录一下,遇到过一种情况,类似这样rdd.flatMap(x=>for(i <- 1 to 1000) yield ("key","value"))导致OOM,但是在同样的情况下,使用rdd.flatMap(x=>for(i <- 1 to 1000) yield "key"+"value")就不会有OOM的问题,这是因为每次("key","value")都产生一个Tuple对象,而"key"+"value",不管多少个,都只有一个对象,指向常量池。具体测试如下:
这个例子说明("key","value")和("key","value")在内存中是存在不同位置的,也就是存了两份,但是"key"+"value"虽然出现了两次,但是只存了一份,在同一个地址,这用到了JVM常量池的知识.于是乎,如果RDD中有大量的重复数据,或者Array中需要存大量重复数据的时候我们都可以将重复数据转化为String,能够有效的减少内存使用.
优化: 这一部分主要记录一下到spark-1.6.1版本,笔者觉得有优化性能作用的一些参数配置和一些代码优化技巧,在参数优化部分,如果笔者觉得默认值是最优的了,这里就不再记录。 代码优化技巧: 1.使用mapPartitions代替大部分map操作,或者连续使用的map操作: 这里需要稍微讲一下RDD和DataFrame的区别。RDD强调的是不可变对象,每个RDD都是不可变的,当调用RDD的map类型操作的时候,都是产生一个新的对象,这就导致了一个问题,如果对一个RDD调用大量的map类型操作的话,每个map操作会产生一个到多个RDD对象,这虽然不一定会导致内存溢出,但是会产生大量的中间数据,增加了gc操作。另外RDD在调用action操作的时候,会出发Stage的划分,但是在每个Stage内部可优化的部分是不会进行优化的,例如rdd.map(_+1).map(_+1),这个操作在数值型RDD中是等价于rdd.map(_+2)的,但是RDD内部不会对这个过程进行优化。DataFrame则不同,DataFrame由于有类型信息所以是可变的,并且在可以使用sql的程序中,都有除了解释器外,都会有一个sql优化器,DataFrame也不例外,有一个优化器 Catalyst,具体介绍看后面 参考的文章。 上面说到的这些RDD的弊端,有一部分就可以使用mapPartitions进行优化,mapPartitions可以同时替代rdd.map,rdd.filter,rdd.flatMap的作用,所以在长操作中,可以在mapPartitons中将RDD大量的操作写在一起,避免产生大量的中间rdd对象,另外是mapPartitions在一个partition中可以复用可变类型,这也能够避免频繁的创建新对象。使用mapPartitions的弊端就是牺牲了代码的易读性。
2.broadcast join和普通join: 在大数据分布式系统中,大量数据的移动对性能的影响也是巨大的。基于这个思想,在两个RDD进行join操作的时候,如果其中一个RDD相对小很多,可以将小的RDD进行collect操作然后设置为broadcast变量,这样做之后,另一个RDD就可以使用map操作进行join,这样能够有效的减少相对大很多的那个RDD的数据移动。
3.先filter在join: 这个就是谓词下推,这个很显然,filter之后再join,shuffle的数据量会减少,这里提一点是spark-sql的优化器已经对这部分有优化了,不需要用户显示的操作,个人实现rdd的计算的时候需要注意这个。
4.partitonBy优化: 这一部分在另一篇文章 《spark partitioner使用技巧 》有详细介绍,这里不说了。
5. combineByKey的使用: 这个操作在Map-Reduce中也有,这里举个例子:rdd.groupByKey().mapValue(_.sum)比rdd.reduceByKey的效率低,原因如下两幅图所示(网上盗来的,侵删)
上下两幅图的区别就是上面那幅有combineByKey的过程减少了shuffle的数据量,下面的没有。combineByKey是key-value型rdd自带的API,可以直接使用。
6. 在内存不足的使用,使用rdd.persist(StorageLevel.MEMORY_AND_DISK_SER)代替rdd.cache(): rdd.cache()和rdd.persist(Storage.MEMORY_ONLY)是等价的,在内存不足的时候rdd.cache()的数据会丢失,再次使用的时候会重算,而rdd.persist(StorageLevel.MEMORY_AND_DISK_SER)在内存不足的时候会存储在磁盘,避免重算,只是消耗点IO时间。
7.在spark使用hbase的时候,spark和hbase搭建在同一个集群: 在spark结合hbase的使用中,spark和hbase最好搭建在同一个集群上上,或者spark的集群节点能够覆盖hbase的所有节点。hbase中的数据存储在HFile中,通常单个HFile都会比较大,另外Spark在读取Hbase的数据的时候,不是按照一个HFile对应一个RDD的分区,而是一个region对应一个RDD分区。所以在Spark读取Hbase的数据时,通常单个RDD都会比较大,如果不是搭建在同一个集群,数据移动会耗费很多的时间。
参数优化部分: 8. spark.driver.memory (default 1g): 这个参数用来设置Driver的内存。在Spark程序中,SparkContext,DAGScheduler都是运行在Driver端的。对应rdd的Stage切分也是在Driver端运行,如果用户自己写的程序有过多的步骤,切分出过多的Stage,这部分信息消耗的是Driver的内存,这个时候就需要调大Driver的内存。
9. spark.rdd.compress (default false) : 这个参数在内存吃紧的时候,又需要persist数据有良好的性能,就可以设置这个参数为true,这样在使用persist(StorageLevel.MEMORY_ONLY_SER)的时候,就能够压缩内存中的rdd数据。减少内存消耗,就是在使用的时候会占用CPU的解压时间。
10. spark.serializer (default org.apache.spark.serializer.JavaSerializer ) 建议设置为 org.apache.spark.serializer.KryoSerializer,因为KryoSerializer比JavaSerializer快,但是有可能会有些Object会序列化失败,这个时候就需要显示的对序列化失败的类进行KryoSerializer的注册,这个时候要配置spark.kryo.registrator参数或者使用参照如下代码: val conf = new SparkConf().setMaster(...).setAppName(...)
conf.registerKryoClasses(Array(classOf[MyClass1] , classOf[MyClass2]))
val sc = new SparkContext(conf)
11. spark.memory.storageFraction (default 0.5) 这个参数设置内存表示 Executor内存中 storage/(storage+execution),虽然spark-1.6.0+的版本内存storage和execution的内存已经是可以互相借用的了,但是借用和赎回也是需要消耗性能的,所以如果明知道程序中storage是多是少就可以调节一下这个参数。
12.spark.locality.wait (default 3s): spark中有4中本地化执行level,PROCESS_LOCAL->NODE_LOCAL->RACK_LOCAL->ANY,一个task执行完,等待spark.locality.wait时间如果,第一次等待PROCESS的Task到达,如果没有,等待任务的等级下调到NODE再等待spark.locality.wait时间,依次类推,直到ANY。分布式系统是否能够很好的执行本地文件对性能的影响也是很大的。如果RDD的每个分区数据比较多,每个分区处理时间过长,就应该把 spark.locality.wait 适当调大一点,让Task能够有更多的时间等待本地数据。特别是在使用persist或者cache后,这两个操作过后,在本地机器调用内存中保存的数据效率会很高,但是如果需要跨机器传输内存中的数据,效率就会很低。
13. spark.speculation (default false): 一个大的集群中,每个节点的性能会有差异,spark.speculation这个参数表示空闲的资源节点会不会尝试执行还在运行,并且运行时间过长的Task,避免单个节点运行速度过慢导致整个任务卡在一个节点上。这个参数最好设置为true。与之相配合可以一起设置的参数有spark.speculation.×开头的参数。 参考中有文章详细说明这个参数。
以后有遇到新的内容再补充。
参考: 1. http://www.jianshu.com/p/c0181667daa0 2. http://www.csdn.net/article/2015-06-18/2824958 3. https://chenzhongpu.gitbooks.io/bigdatanotes/content/SparkSQLOptimizer/index.html 4. http://book.51cto.com/art/201409/453045.htm
转载请保持完整性并注明来源链接: http://blog.csdn.net/yhb315279058/article/details/51035631
以上是关于spark内存溢出及其解决方案的主要内容,如果未能解决你的问题,请参考以下文章
Spark Shuffle 堆外内存溢出问题与解决(Shuffle通信原理)
Spark:随机写入、随机溢出(内存)、随机溢出(磁盘)之间的区别?
myEclipse开发内存溢出解决办法myEclipse调整jvm内存大小java.lang.OutOfMemoryError: PermGen space及其解决方法