linux:排序,唯一与重复

Posted

tags:

篇首语:本文由小常识网(cha138.com)小编为大家整理,主要介绍了linux:排序,唯一与重复相关的知识,希望对你有一定的参考价值。

参考技术A

对一组文件进行排序

按照数字顺序进行排序

逆序排序

按照月份排序

合并两个已经排序过的文件

找出已排序文件中不重复的行

检查文件是否已经排序过

按照某一列进行排序:-k

按照特定范围内的一组字符进行排序

打印唯一行

只显示唯一的行

统计各行在文件中出现的次数

找出文件中重复的行

==========================================================================================================

mysql “索引”能重复吗?“唯一索引”与“索引”区别是啥?

把一个字段设为索引,那这个字段中不能有重复值?
唯一索引用在什么时候?

一、使用不同:

主键索引是在创建主键时一起创建的,是基于主键约束而建立的,是不可以为空,也不可以重复。

唯一索是引基于唯一约束而建立的,可以为空不可以重复,主键索引本身就具备了唯一索引的功能。

二、作用不同:

唯一索引的作用跟主键的作用一样。不同的是,在一张表里面只能有一个主键,主键不能为空,唯一索引可以有多个,唯一索引可以有一条记录为空,即保证跟别人不一样就行。

比如学生表,在学校里面一般用学号做主键,身份证则弄成唯一索引;而到了教育局,他们就把身份证号弄成主键,学号换成了唯一索引。

三、定义不同:

普通索引:这是最基本的索引类型,而且它没有唯一性之类的限制。

唯一性索引:这种索引和前面的“普通索引”基本相同,但有一个区别:索引列的所有值都只能出现一次,即必须唯一。

扩展资料:

要对一个表建立唯一索引,可以使用关键字UNIQUE。对聚簇索引和非聚簇索引都可以使用这个关键字。

例子

CREATE UNIQUE CLUSTERED INDEX myclumn_cindex ON mytable(mycolumn)

其中:CLUSTERED INDEX是用来建立聚簇索引的关键字,此语句的意思是在表mytable上的mycolumn字段上创建一个名为myclumn_cindex的聚簇索引,且为唯一索引。

参考资料来源:百度百科-唯一索引

参考技术A 普通索引是可以重复的,唯一索引和主键不能重复

唯一索引可以作为数据的一个合法验证手段,例如学生表的身份证号码字段,我们人为规定该字段不得重复,那么就使用唯一索引。(一般设置学号字段为主键)
参考技术B 普通索引
这是最基本的索引类型,而且它没有唯一性之类的限制。
唯一性索引
这种索引和前面的“普通索引”基本相同,但有一个区别:索引列的所有值都只能出现一次,即必须唯一。本回答被提问者和网友采纳
参考技术C 索引是可以有重复数据的,主键其实就是一种唯一索引,不可重复 参考技术D

在满足语句需求的情况下,尽量少的访问资源是数据库设计的重要原则,这和执行的 SQL 有直接的关系,索引问题又是 SQL 问题中出现频率最高的,常见的索引问题包括:无索引(失效)、隐式转换。
1. SQL 执行流程看一个问题,在下面这个表 T 中,如果我要执行 select * from T where k between 3 and 5; 需要执行几次树的搜索操作,会扫描多少行?mysql> create table T (    -> ID int primary key,    -> k int NOT NULL DEFAULT 0,    -> s varchar(16) NOT NULL DEFAULT '',    -> index k(k))    -> engine=InnoDB;mysql> insert into T values(100,1, 'aa'),(200,2,'bb'),\\      (300,3,'cc'),(500,5,'ee'),(600,6,'ff'),(700,7,'gg');
这分别是 ID 字段索引树、k 字段索引树。 

这条 SQL 语句的执行流程:

1. 在 k 索引树上找到 k=3,获得 ID=3002. 回表到 ID 索引树查找 ID=300 的记录,对应 R33. 在 k 索引树找到下一个值 k=5,ID=5004. 再回到 ID 索引树找到对应 ID=500 的 R4

5. 在 k 索引树去下一个值 k=6,不符合条件,循环结束

这个过程读取了 k 索引树的三条记录,回表了两次。因为查询结果所需要的数据只在主键索引上有,所以必须得回表。所以,我们该如何通过优化索引,来避免回表呢?
2. 常见索引优化2.1 覆盖索引覆盖索引,换言之就是索引要覆盖我们的查询请求,无需回表。

如果执行的语句是 select ID from T wherek between 3 and 5;,这样的话因为 ID 的值在 k 索引树上,就不需要回表了。

覆盖索引可以减少树的搜索次数,显著提升查询性能,是常用的性能优化手段。

但是,维护索引是有代价的,所以在建立冗余索引来支持覆盖索引时要权衡利弊。

2.2 最左前缀原则

B+ 树的数据项是复合的数据结构,比如 (name,sex,age) 的时候,B+ 树是按照从左到右的顺序来建立搜索树的,当 (张三,F,26) 这样的数据来检索的时候,B+ 树会优先比较 name 来确定下一步的检索方向,如果 name 相同再依次比较 sex 和 age,最后得到检索的数据。

    # 有这样一个表 P

    mysql> create table P (id int primary key, name varchar(10) not null, sex varchar(1), age int, index tl(name,sex,age)) engine=IInnoDB;

    mysql> insert into P values(1,'张三','F',26),(2,'张三','M',27),(3,'李四','F',28),(4,'乌兹','F',22),(5,'张三','M',21),(6,'王五','M',28);

    # 下面的语句结果相同

    mysql> select * from P where name='张三' and sex='F';     ## A1

    mysql> select * from P where sex='F' and age=26;         ## A2

    # explain 看一下

    mysql> explain select * from P where name='张三' and sex='F';

    +----+-------------+-------+------------+------+---------------+------+---------+-------------+------+----------+-------------+

    | id | select_type | table | partitions | type | possible_keys | key  | key_len | ref         | rows | filtered | Extra       |

    +----+-------------+-------+------------+------+---------------+------+---------+-------------+------+----------+-------------+

    |  1 | SIMPLE      | P     | NULL       | ref  | tl            | tl   | 38      | const,const |    1 |   100.00 | Using index |

    +----+-------------+-------+------------+------+---------------+------+---------+-------------+------+----------+-------------+

    mysql> explain select * from P where sex='F' and age=26;

    +----+-------------+-------+------------+-------+---------------+------+---------+------+------+----------+--------------------------+

    | id | select_type | table | partitions | type  | possible_keys | key  | key_len | ref  | rows | filtered | Extra                    |

    +----+-------------+-------+------------+-------+---------------+------+---------+------+------+----------+--------------------------+

    |  1 | SIMPLE      | P     | NULL       | index | NULL          | tl   | 43      | NULL |    6 |    16.67 | Using where; Using index |

    +----+-------------+-------+------------+-------+---------------+------+---------+------+------+----------+--------------------------+

    可以清楚的看到,A1 使用 tl 索引,A2 进行了全表扫描,虽然 A2 的两个条件都在 tl 索引中出现,但是没有使用到 name 列,不符合最左前缀原则,无法使用索引。所以在建立联合索引的时候,如何安排索引内的字段排序是关键。评估标准是索引的复用能力,因为支持最左前缀,所以当建立(a,b)这个联合索引之后,就不需要给 a 单独建立索引。原则上,如果通过调整顺序,可以少维护一个索引,那么这个顺序往往就是需要优先考虑采用的。上面这个例子中,如果查询条件里只有 b,就是没法利用(a,b)这个联合索引的,这时候就不得不维护另一个索引,也就是说要同时维护(a,b)、(b)两个索引。这样的话,就需要考虑空间占用了,比如,name 和 age 的联合索引,name 字段比 age 字段占用空间大,所以创建(name,age)联合索引和(age)索引占用空间是要小于(age,name)、(name)索引的。

    2.3 索引下推

    以人员表的联合索引(name, age)为例。如果现在有一个需求:检索出表中“名字第一个字是张,而且年龄是26岁的所有男性”。那么,SQL 语句是这么写的mysql> select * from tuser where name like '张%' and age=26 and sex=M;
    通过最左前缀索引规则,会找到 ID1,然后需要判断其他条件是否满足在 MySQL 5.6 之前,只能从 ID1 开始一个个回表。到主键索引上找出数据行,再对比字段值。而 MySQL 5.6 引入的索引下推优化(index condition pushdown),可以在索引遍历过程中,对索引中包含的字段先做判断,直接过滤掉不满足条件的记录,减少回表次数。这样,减少了回表次数和之后再次过滤的工作量,明显提高检索速度。

    2.4 隐式类型转化

    隐式类型转化主要原因是,表结构中指定的数据类型与传入的数据类型不同,导致索引无法使用。所以有两种方案:修改表结构,修改字段数据类型。

    修改应用,将应用中传入的字符类型改为与表结构相同类型。

    3. 为什么会选错索引3.1 优化器选择索引是优化器的工作,其目的是找到一个最优的执行方案,用最小的代价去执行语句。在数据库中,扫描行数是影响执行代价的因素之一。扫描的行数越少,意味着访问磁盘数据的次数越少,消耗的 CPU 资源越少。当然,扫描行数并不是唯一的判断标准,优化器还会结合是否使用临时表、是否排序等因素进行综合判断。

    3.2 扫描行数

    MySQL 在真正开始执行语句之前,并不能精确的知道满足这个条件的记录有多少条,只能通过索引的区分度来判断。显然,一个索引上不同的值越多,索引的区分度就越好,而一个索引上不同值的个数我们称为“基数”,也就是说,这个基数越大,索引的区分度越好。# 通过 show index 方法,查看索引的基数mysql> show index from t;+-------+------------+----------+--------------+-------------+-----------+-------------+----------+--------+------+------------+---------+---------------+| Table | Non_unique | Key_name | Seq_in_index | Column_name | Collation | Cardinality | Sub_part | Packed | Null | Index_type | Comment | Index_comment |+-------+------------+----------+--------------+-------------+-----------+-------------+----------+--------+------+------------+---------+---------------+| t     |          0 | PRIMARY  |            1 | id          | A         |       95636 |     NULL | NULL   |      | BTREE      |         |               || t     |          1 | a        |            1 | a           | A         |       96436 |     NULL | NULL   | YES  | BTREE      |         |               || t     |          1 | b        |            1 | b           | A         |       96436 |     NULL | NULL   | YES  | BTREE      |         |               |+-------+------------+----------+--------------+-------------+-----------+-------------+----------+--------+------+------------+---------+---------------+
    MySQL 使用采样统计方法来估算基数:采样统计的时候,InnoDB 默认会选择 N 个数据页,统计这些页面上的不同值,得到一个平均值,然后乘以这个索引的页面数,就得到了这个索引的基数。而数据表是会持续更新的,索引统计信息也不会固定不变。所以,当变更的数据行数超过 1/M 的时候,会自动触发重新做一次索引统计。

    在 MySQL 中,有两种存储索引统计的方式,可以通过设置参数 innodb_stats_persistent 的值来选择:

    on 表示统计信息会持久化存储。默认 N = 20,M = 10。

    off 表示统计信息只存储在内存中。默认 N = 8,M = 16。

    由于是采样统计,所以不管 N 是 20 还是 8,这个基数都很容易不准确。所以,冤有头债有主,MySQL 选错索引,还得归咎到没能准确地判断出扫描行数。

    可以用 analyze table 来重新统计索引信息,进行修正。

    ANALYZE [LOCAL | NO_WRITE_TO_BINLOG] TABLE tbl_name [, tbl_name] ...
    3.3 索引选择异常和处理1. 采用 force index 强行选择一个索引。2. 可以考虑修改语句,引导 MySQL 使用我们期望的索引。3. 有些场景下,可以新建一个更合适的索引,来提供给优化器做选择,或删掉误用的索引。

以上是关于linux:排序,唯一与重复的主要内容,如果未能解决你的问题,请参考以下文章

postgresql排序分页时数据重复问题

Linux命令之uniq

开发随笔——mysql分页出现重复数据

Order by排序后分页limit取值出现重复显示问题

oracle 分页查询重复问题

如何使用“唯一”从向量中删除重复项?