ccf认证 201709-4 通信网络 java实现

Posted 稀里糊涂林老冷

tags:

篇首语:本文由小常识网(cha138.com)小编为大家整理,主要介绍了ccf认证 201709-4 通信网络 java实现相关的知识,希望对你有一定的参考价值。

 

试题编号:                                                               201709-4
试题名称: 通信网络
时间限制: 1.0s
内存限制: 256.0MB
问题描述:
问题描述
  某国的军队由N个部门组成,为了提高安全性,部门之间建立了M条通路,每条通路只能单向传递信息,即一条从部门a到部门b的通路只能由ab传递信息。信息可以通过中转的方式进行传递,即如果a能将信息传递到bb又能将信息传递到c,则a能将信息传递到c。一条信息可能通过多次中转最终到达目的地。
  由于保密工作做得很好,并不是所有部门之间都互相知道彼此的存在。只有当两个部门之间可以直接或间接传递信息时,他们才彼此知道对方的存在。部门之间不会把自己知道哪些部门告诉其他部门。
技术分享图片
  上图中给了一个4个部门的例子,图中的单向边表示通路。部门1可以将消息发送给所有部门,部门4可以接收所有部门的消息,所以部门1和部门4知道所有其他部门的存在。部门2和部门3之间没有任何方式可以发送消息,所以部门2和部门3互相不知道彼此的存在。
  现在请问,有多少个部门知道所有N个部门的存在。或者说,有多少个部门所知道的部门数量(包括自己)正好是N
输入格式
  输入的第一行包含两个整数NM,分别表示部门的数量和单向通路的数量。所有部门从1到N标号。
  接下来M行,每行两个整数ab,表示部门a到部门b有一条单向通路。
输出格式
  输出一行,包含一个整数,表示答案。
样例输入
4 4
1 2
1 3
2 4
3 4
样例输出
2
样例说明
  部门1和部门4知道所有其他部门的存在。
评测用例规模与约定
  对于30%的评测用例,1 ≤ N ≤ 10,1 ≤ M ≤ 20;
  对于60%的评测用例,1 ≤ N ≤ 100,1 ≤ M ≤ 1000;
  对于100%的评测用例,1 ≤ N ≤ 1000,1 ≤ M ≤ 10000。

 

这是一道深度优先搜索的图论。。

把它理解成:

输入一个图,我们判断一下 有几个节点能到其他所有节点和 有几个节点能被其他所有节点访问到。

题目中说是单项图,但是问题是 能访问所有节点和能被所有节点访问都算数,所以和双向图也没有区别,

把它理解成 图中哪些节点与其他所有节点有通路就可以了。

 

需要用到深度优先遍历的思想,具体这样实现:

有n个点 m条路

1 建立一个邻接表:n长度的数组line,数组里每个位置存一张链表, line[i] 的链表里存着 所有能从i点出发到达的节点的编号。

2 建立一个n*n二维表graph  代表整个图,,我们要对 邻接表line进行深度优先遍历,

  在line中 root从1到n  依次拿i当做根节点编号root, 拿到line[root] 链表,

    在链表里所有的节点i都能从root出发到达,我们就在graph[root][i]和graph[i][root]标记为1 表明他们连同

    同时i节点能到达的节点,root也能间接到达,所以 我们再对line[i] 列表里所有的节点标号进行在graph上标记连通。

    为了防止图中出现循环通路的情况,我用用一个visited表进行标记 同一个root出发进行深度遍历的时候,访问到某个节点i 就把visited[i] 设为1 表示访问过了,跳过访问

 

这里我们要深度优先,所以 要在循环里面递归。

最后我们再graph上进行统计 某一行所有数据都是1  那么说明他和所有点都能连通。

 

java代码:

       

 1 import java.util.ArrayList;
 2 import java.util.List;
 3 import java.util.Scanner;
 4 
 5 public class Main{
 6     public Scanner fin;    // 标准输入
 7     public int n,m;    // 点的个数和路径的个数
 8     public int visited[]; // 标记每次深度搜索是否遍历过目标节点 方式无限递归
 9     public List<Integer>[] line;    // 第i个列表存i能到达的所有节点编号
10     public int[][] graph;    // 二维表i j  标记i和j之间有通路
11     public int root;     // 记录每次遍历的根节点
12     public int count=0;    // 最终结果哦
13     
14     public static void main(String[] args) {
15         new Main().run();
16     }
17     public void run() {
18         init();
19         // 输入每条路 
20         for(int i=1;i<=m;i++) {
21             int a = fin.nextInt();
22             int b = fin.nextInt();
23             line[a].add(b);    // a节点能到达b节点
24         }
25         // 对每一个节点 进行深度优先遍历,更新二维表graph  将i 和j 两个节点之间有路的 二维表相应位置设为1
26         for(int i=1;i<=n;i++) {
27             // 对每次从根节点遍历子节点进行初始化visited数组
28             visited = new int[n+1];
29             root = i;
30             dfs(i);
31         }
32         // 统计能够知道所有其他节点的节点个数
33         for(int i=1;i<=n;i++) {
34             for(int j=1;j<=n;j++) {
35                 if(graph[i][j]==0) {
36                     break;
37                 }
38                 if(j==n) {
39                     count ++;
40                 }
41             }
42         }
43         System.out.println(count);
44         
45         
46     }
47     public void dfs(int cur) {
48         // 根节点和当前子节点能够通路
49         graph[root][cur] = 1;
50         graph[cur][root] = 1;
51         visited[cur] = 1;
52         // 对cur节点能到达的节点列表遍历
53         for(int i=0;i<line[cur].size();i++) {
54             if(visited[line[cur].get(i)]==0) {        // 如果当前子节点还没有被访问过
55                 dfs(line[cur].get(i));
56             }
57         }
58     }
59     
60     public void init() {
61         fin = new Scanner(System.in);
62         n = fin.nextInt();
63         m = fin.nextInt();
64         visited = new int[n+1];
65         line = new List[n+1];
66         for(int i=1;i<=n;i++) {
67             line[i] = new ArrayList<>();
68         }
69         graph = new int[n+1][n+1];
70         
71     }
72     
73 }

 












以上是关于ccf认证 201709-4 通信网络 java实现的主要内容,如果未能解决你的问题,请参考以下文章

(ccf)201709-4 通信网络

CCF201709-4 通信网络(100分)DFS+BFS

CCF201709-4通信网络(dfs+vector)

CCF-CSP 201709-4通信网络

CCF(通信网络):简单DFS+floyd算法

5-201709-4-通信网络