CuDNN简介
Posted
tags:
篇首语:本文由小常识网(cha138.com)小编为大家整理,主要介绍了CuDNN简介相关的知识,希望对你有一定的参考价值。
参考技术A 对象:CuDNN全称:NVIDIA CuDNN
实质:是用于深度神经网络的GPU加速库
特点:
1 强调性能、易用性和低内存开销
2 NVIDIA cuDNN可以集成到更高级别的机器学习框架中(加州大学伯克利分校的流行CAFFE软件)
3 插入式设计可以让开发人员专注于设计和实现神经网络模型,而不是调整性能
优点:
1 可以在GPU上实现高性能现代并行计算
CuDNN支持的算法:
1 卷积操作、相关操作的前向和后向过程
2 pooling的前向后向过程
3 softmax的前向后向过程
4 激活函数的前向后向过程
5 Tensor转换函数,其中一个Tensor就是一个四维的向量
cuda 8.0对应啥cudnn版本
ubuntu14.04 64位的cudnn6.0版本。
CUDA
(Compute Unified Device Architecture),是显卡厂商NVIDIA推出的运算平台。 CUDA™是一种由NVIDIA推出的通用并行计算架构,该架构使GPU能够解决复杂的计算问题。 它包含了CUDA指令集架构(ISA)以及GPU内部的并行计算引擎。 开发人员现在可以使用C语言来为CUDA™架构编写程序,C语言是应用最广泛的一种高级编程语言。所编写出的程序于是就可以在支持CUDA™的处理器上以超高性能运行。CUDA3.0已经开始支持C++和FORTRAN
应用范围
计算行业正在从只使用CPU的“中央处理”向CPU与GPU并用的“协同处理”发展。为打造这一全新的计算典范,NVIDIA™(英伟达™)发明了CUDA(Compute Unified Device Architecture,统一计算设备架构)这一编程模型,是想在应用程序中充分利用CPU和GPU各自的优点。现在,该架构已应用于GeForce™(精视™)、ION™(翼扬™)、Quadro以及Tesla GPU(图形处理器)上,对应用程序开发人员来说,这是一个巨大的市场。
CPU与GPU并用的“协同处理”
在消费级市场上,几乎每一款重要的消费级视频应用程序都已经使用CUDA加速或很快将会利用CUDA来加速,其中不乏Elemental Technologies公司、MotionDSP公司以及LoiLo公司的产品。
GPU架构
在科研界,CUDA一直受到热捧。例如,CUDA现已能够对AMBER进行加速。AMBER是一款分子动力学模拟程序,全世界在学术界与制药企业中有超过60,000名研究人员使用该程序来加速新药的探索工作。
在金融市场,Numerix以及CompatibL针对一款全新的对手风险应用程序发布了CUDA支持并取得了18倍速度提升。Numerix为近400家金融机构所广泛使用。
CUDA的广泛应用造就了GPU计算专用Tesla GPU的崛起。全球财富五百强企业现在已经安装了700多个GPU集群,这些企业涉及各个领域,例如能源领域的斯伦贝谢与雪佛龙以及银行业的法国巴黎银行。
随着微软Windows 7与苹果Snow Leopard操作系统的问世,GPU计算必将成为主流。在这些全新的操作系统中,GPU将不仅仅是图形处理器,它还将成为所有应用程序均可使用的通用并行处理器。
参考技术A NVIDIA CuDNN 安装说明CuDNN是专门针对Deep Learning框架设计的一套GPU计算加速方案,目前支持的DL库包括Caffe,ConvNet, Torch7等。
CuDNN可以在官网获得,注册帐号后即可下载。官网没有找到安装说明,下载得到的压缩包内也没有Readme. 不过google一下就会找到许多说明。基本原理是把lib文件加入到系统能找到的lib文件夹里, 把头文件加到系统能找到的include文件夹里就可以。这里把他们加到CUDA的文件夹下(参考这里)
tar -xzvf cudnn-6.5-linux-R1.tgz
cd cudnn-6.5-linux-R1
sudo cp lib* /usr/local/cuda/lib64/
sudo cp cudnn.h /usr/local/cuda/include/
执行后发现还是找不到库, 报错
error while loading shared libraries: libcudnn.so.6.5: cannot open shared object file: No such file or directory
而lib文件夹是在系统路径里的,用ls -al发现是文件权限的问题,因此用下述命令先删除软连接
cd /usr/local/cuda/lib64/
sudo rm -rf libcudnn.so libcudnn.so.6.5
然后修改文件权限,并创建新的软连接
sudo chmod u=rwx,g=rx,o=rx libcudnn.so.6.5.18
sudo ln -s libcudnn.so.6.5.18 libcudnn.so.6.5
sudo ln -s libcudnn.so.6.5 libcudnn.so
回答不容易,希望能帮到您,满意请帮忙采纳一下,谢谢 !
以上是关于CuDNN简介的主要内容,如果未能解决你的问题,请参考以下文章
安装tensorflow的GPU版本(详细图文教程)--CUDA11.6的安装