朋友想学习大数据,有哪里可以学习呢?
Posted
tags:
篇首语:本文由小常识网(cha138.com)小编为大家整理,主要介绍了朋友想学习大数据,有哪里可以学习呢?相关的知识,希望对你有一定的参考价值。
参考技术A 大数据也是最近几年才火起来的学科,之前发展一直是不瘟不火的,可能是和这些年高速发展是互联网有一定的关系的。目前想要学习大数据建议还是去一线城市进行学习的比较好,大数据是属于高度技术行业,在二三线城市现在发展得还不是很好,大多数的大企业都是在一线城市,所以很多技术都是出现在一线城市的。
选择去北京学习大数据确实非常不错,因为现在大数据发展比较好的地方也就是北上广这样的地方。而且在这里也是大数据培训机构比较集中的地方,这里的机构有很多,其中相对比较专业的机构也有很多,大家可以选择到的几率也比较高。
具体的大家可以通过机构的师资、课程、学习环境以及就业情况等多方面的内容去对比选择,我相信总有一家是比较适合你的。
如果,确定了想要到北京学习大数据技术的话,大家可以到尚硅谷来进行了解一下。
学习大数据之前建议献血好计算机基础知识,否则如同聚沙成塔一般根基不稳。
具体到大数据本身,建议先掌握一些基本的工具,例如hive,Hadoop,hbase,es等,先做一些简单的数据分析。
个人学习经验,如果是我会先选择找一本入门的大数据相关的书籍,通读一遍,建立对大数据的一个概念。然后可以到b站或者慕课网等学习网站找视频资源,这类视频也有深有浅,看自己当时的情况有选择的看。最后,你想要更近一步的探究大数据,就应该找更专业的书籍或论文去研读,这一类论文可以到知网或者谷歌文献去找。
一、如何将商业运营问题转化为大数据挖掘问题
那么,问题来了,我们该如何把上述的商业运营问题转化为数据挖掘问题?可以对数据挖掘问题进行细分,分为四类问题:分类问题、聚类问题、关联问题、预测问题。
1、分类问题
用户流失率、促销活动响应、评估用户度都属于数据挖掘的分类问题,我们需要掌握分类的特点,知道什么是有监督学习,掌握常见的分类方法:决策树、贝叶斯、KNN、支持向量机、神经网络和逻辑回归等。
2、聚类问题
细分市场、细分客户群体都属于数据挖掘的聚类问题,我们要掌握聚类特点,知道无监督学习,了解常见的聚类算法,例如划分聚类、层次聚类、密度聚类、网格聚类、基于模型聚类等。
3、关联问题
交叉销售问题等属于关联问题,关联分析也叫购物篮分析,我们要掌握常见的关联分析算法:Aprior算法、Carma算法,序列算法等。
4、预测问题
我们要掌握简单线性回归分析、多重线性回归分析、时间序列等。
二、用何种工具实操大数据挖掘
能实现数据挖掘的工具和途径实在太多,SPSS、SAS、Python、R等等都可以,但是我们需要掌握哪个或者说要掌握哪几个,才算学会了数据挖掘?这需要看你所处的层次和想要进阶的路径是怎样的。
第一层级:达到理解入门层次
了解统计学和数据库即可。
第二层级:达到初级职场应用层次
数据库+统计学+SPSS(也可以是SPSS代替软件)
第三层级:达到中级职场应用层次
SAS或R
第四层级:达到数据挖掘师层次
SAS或R+Python(或其他编程语言)
三、如何利用Python学习大数据挖掘
只要能解决实际问题,用什么工具来学习数据挖掘都是无所谓,这里首推Python。那该如何利用Python来学习数据挖掘?需要掌握Python中的哪些知识?
1、Pandas库的操作
Panda是数据分析特别重要的一个库,我们要掌握以下三点:
pandas 分组计算;
pandas 索引与多重索引;
索引比较难,但是却是非常重要的
pandas 多表操作与数据透视表
2、numpy数值计算
numpy数据计算主要应用是在数据挖掘,对于以后的机器学习,深度学习,这也是一个必须掌握的库,我们要掌握以下内容:
Numpy array理解;
数组索引操作;
数组计算;
Broadcasting(线性代数里面的知识)
3、数据可视化-matplotlib与seaborn
Matplotib语法
python最基本的可视化工具就是matplotlib。咋一看Matplotlib与matlib有点像,要搞清楚二者的关系是什么,这样学习起来才会比较轻松。
seaborn的使用
seaborn是一个非常漂亮的可视化工具。
pandas绘图功能
前面说过pandas是做数据分析的,但它也提供了一些绘图的API。
4、数据挖掘入门
这部分是最难也是最有意思的一部分,要掌握以下几个部分:
机器学习的定义
在这里跟数据挖掘先不做区别
代价函数的定义
Train/Test/Validate
Overfitting的定义与避免方法
5、数据挖掘算法
数据挖掘发展到现在,算法已经非常多,下面只需掌握最简单的,最核心的,最常用的算法:
最小二乘算法;
梯度下降;
向量化;
极大似然估计;
Logistic Regression;
Decision Tree;
RandomForesr;
XGBoost;
6、数据挖掘实战
通过机器学习里面最著名的库scikit-learn来进行模型的理解。
以上,就是为大家理清的大数据挖掘学习思路逻辑。可是,这还仅仅是开始,在通往数据挖掘师与数据科学家路上,还要学习文本处理与自然语言知识、Linux与Spark的知识、深度学习知识等等,我们要保持持续的兴趣来学习数据挖掘。
网易云课堂
哪里可以学习深度学习课程?想学人工智能方向的
听室友说过某公有开这方向的课,有了解的朋友吗
深度学习课程,最好的自学地方是B站搜索李宏毅,台大的老师,将深度学习水瓶是华语第一人
它的视频观看就可以看很久很久
当然他讲的是偏理论的部分,如果你想实践,可以去找培训班,因为深度学习本身就比较难,自己去寻找机会是比较缺乏的
培训班推荐一个七月在线吧 参考技术A 01自然语言生成(Natural Language Generation)
自然语言生成是人工智能的分支,研究如何将数据转化为文本,用于客户服务、报告生成以及市场概述。
02语音识别(Speech Recognition)
Siri就是一个典型的例子。
目前,通过语音应答交互系统和移动应用程序对人类语言进行转录的系统已多达数十万。
03虚拟助理(Virtual Agents)
虚拟助理是一种能与人类进行交互的计算机代理或程序,其中以聊天机器人最为著名。虚拟助理多用于客户服务和支持,并可以作为智能家居的管理者。
04机器学习平台(Machine Learning Platforms)
机器学习是计算机科学和人工智能技术的分支,它能提升计算机的学习能力。
通过提供算法、API(应用程序接口)、开发和训练工具包、数据、以及计算能力来设计、培训和部署模型到应用程序、流程和其他机器,广受企业青睐,用以解决预测和分类任务。
Adext是世界上第一个也是唯一的观众管理工具,它将人工智能和机器学习应用于数字广告,以期将广告精准的投放给最符合产品定位的受众。
05人工智能硬件优化(AI-optimized Hardware)
用于运行面向人工智能的计算任务,是经过专门设计和架构的GPU(图形处理单元)和CPU(中央处理单元)。
即将推出的基于人工智能优化的硅芯片,将直接嵌入到你的便携设备以及生活各处。
06决策管理(Decision Management)
智能机器能够向AI系统引入规则及逻辑,因此你可以利用它们进行初始化设置/训练,以及持续的维护和优化。
决策管理在多类企业应用中得以实现,它能协助或者进行自动决策,实现企业收益最大化。 参考技术B 01自然语言生成(Natural Language Generation)
自然语言生成是人工智能的分支,研究如何将数据转化为文本,用于客户服务、报告生成以及市场概述。
02语音识别(Speech Recognition)
Siri就是一个典型的例子。
目前,通过语音应答交互系统和移动应用程序对人类语言进行转录的系统已多达数十万。
03虚拟助理(Virtual Agents)
虚拟助理是一种能与人类进行交互的计算机代理或程序,其中以聊天机器人最为著名。虚拟助理多用于客户服务和支持,并可以作为智能家居的管理者。
04机器学习平台(Machine Learning Platforms)
机器学习是计算机科学和人工智能技术的分支,它能提升计算机的学习能力。
通过提供算法、API(应用程序接口)、开发和训练工具包、数据、以及计算能力来设计、培训和部署模型到应用程序、流程和其他机器,广受企业青睐,用以解决预测和分类任务。
Adext是世界上第一个也是唯一的观众管理工具,它将人工智能和机器学习应用于数字广告,以期将广告精准的投放给最符合产品定位的受众。
05人工智能硬件优化(AI-optimized Hardware)
用于运行面向人工智能的计算任务,是经过专门设计和架构的GPU(图形处理单元)和CPU(中央处理单元)。
即将推出的基于人工智能优化的硅芯片,将直接嵌入到你的便携设备以及生活各处。
06决策管理(Decision Management)
智能机器能够向AI系统引入规则及逻辑,因此你可以利用它们进行初始化设置/训练,以及持续的维护和优化。
决策管理在多类企业应用中得以实现,它能协助或者进行自动决策,实现企业收益最大化。
以上是关于朋友想学习大数据,有哪里可以学习呢?的主要内容,如果未能解决你的问题,请参考以下文章