Java NIO —— Buffer(缓冲区)
Posted 落后就要挨打
tags:
篇首语:本文由小常识网(cha138.com)小编为大家整理,主要介绍了Java NIO —— Buffer(缓冲区)相关的知识,希望对你有一定的参考价值。
Buffer是一个抽象类,位于java.nio包中,主要用作缓冲区。注意:Buffer是非线程安全类。
缓冲区本质上是一块可以写入数据,然后可以从中读取数据的内存。这块内存被包装成NIO Buffer对象,并提供了一组方法,用来方便的访问该块内存。
NIO 有以下几种Buffer类型:
- ByteBuffer
- MappedByteBuffer
- CharBuffer
- DoubleBuffer
- FloatBuffer
- IntBuffer
- LongBuffer
- ShortBuffer
capacity
作为一个内存块,Buffer有一个固定的大小值,也叫“capacity”.你只能往里写capacity个byte、long,char等类型。一旦Buffer满了,需要将其清空(通过读数据或者清除数据)才能继续写数据往里写数据。
capacity一旦初始化
后就不会改变,其值一直为常量。在使用中我们一般使用Buffer的抽象子类ByteBuffer.allocate()方法,实际上是生成ByteArrayBuffer类。
position
当你写数据到Buffer中时,position表示当前的位置。初始的position值为0.当一个byte、long等数据写到Buffer后, position会向前移动到下一个可插入数据的Buffer单元。position最大可为capacity – 1。
当读取数据时,也是从某个特定位置读。当将Buffer从写模式切换到读模式,position会被重置为0。当从Buffer的position处读取数据时,position向前移动到下一个可读的位置。
limit
在读模式下,Buffer的limit表示你最多能从Buffer里读多少数据。 写模式下,limit等于Buffer的capacity。
当切换Buffer到读模式时, limit表示你最多能读到多少数据。因此,当切换Buffer到读模式时,limit会被设置成写模式下的position值。换句话说,你能读到之前写入的所有数据(limit被设置成已写数据的数量,这个值在写模式下就是position)
(1)Buffer中定义的变量含义
/** * <code>UNSET_MARK</code> means the mark has not been set. */ static final int UNSET_MARK = -1; /** * The capacity of this buffer, which never changes. */ final int capacity; /** * <code>limit - 1</code> is the last element that can be read or written. * Limit must be no less than zero and no greater than <code>capacity</code>. */ int limit; /** * Mark is where position will be set when <code>reset()</code> is called. * Mark is not set by default. Mark is always no less than zero and no * greater than <code>position</code>. */ int mark = UNSET_MARK; /** * The current position of this buffer. Position is always no less than zero * and no greater than <code>limit</code>. */ int position = 0; /** * The log base 2 of the element size of this buffer. Each typed subclass * (ByteBuffer, CharBuffer, etc.) is responsible for initializing this * value. The value is used by JNI code in frameworks/base/ to avoid the * need for costly ‘instanceof‘ tests. */ final int _elementSizeShift; /** * For direct buffers, the effective address of the data; zero otherwise. * This is set in the constructor. */ final long effectiveDirectAddress;
(2)clear()方法用于写模式,其作用为清空Buffer中的内容,所谓清空是指写上限与Buffer的真实容量相同,即limit==capacity,同时将当前写位置置为最前端下标为0处。代码如下:
/** * <code>UNSET_MARK</code> means the mark has not been set. */ static final int UNSET_MARK = -1; /** * Clears this buffer. * <p> * While the content of this buffer is not changed, the following internal * changes take place: the current position is reset back to the start of * the buffer, the value of the buffer limit is made equal to the capacity * and mark is cleared. * * @return this buffer. */ public final Buffer clear() { position = 0; //设置当前下标为0 mark = UNSET_MARK; //取消标记 limit = capacity; //设置写越界位置与和Buffer容量相同 return this; }
(3)reset()方法和clear()方法一样用于写模式,区别是reset()的作用是丢弃mark位置以后的数据,重新从mark位置开始写入,且mark不能未设置;而clear是从0位置开始重新写入。
-
/** * Sets this buffer‘s mark at its position. * * @return This buffer */ public final Buffer mark() { mark = position; return this; } /** * Resets the position of this buffer to the <code>mark</code>. * * @return this buffer. * @throws InvalidMarkException * if the mark is not set. */ public final Buffer reset() { if (mark == UNSET_MARK) { throw new InvalidMarkException("Mark not set"); } position = mark; return this; }
(4)rewind()在读写模式下都可用,它单纯的将当前位置置0,同时取消mark标记,仅此而已;也就是说写模式下limit仍保持与Buffer容量相同,只是重头写而已;读模式下limit仍然与rewind()调用之前相同,也就是为flip()调用之前写模式下的position的最后位置,flip()调用后此位置变为了读模式的limit位置,即越界位置,代码如下:
/** * Rewinds this buffer. * <p> * The position is set to zero, and the mark is cleared. The content of this * buffer is not changed. * * @return this buffer. */ public final Buffer rewind() { position = 0; mark = UNSET_MARK; return this; }
(5)flip()函数的作用是将写模式转变为读模式,即将写模式下的Buffer中内容的最后位置变为读模式下的limit位置,作为读越界位置,同时将当前读位置置为0,表示转换后重头开始读,同时再消除写模式下的mark标记,代码如下
/** * Flips this buffer. * <p> * The limit is set to the current position, then the position is set to * zero, and the mark is cleared. * <p> * The content of this buffer is not changed. * * @return this buffer. */ public final Buffer flip() { limit = position; position = 0; mark = UNSET_MARK; return this; }
(6)remaining()仅在读模式下使用,用来获取还未读出的字节数。
-
/** * Returns the number of remaining elements in this buffer, that is * {@code limit - position}. * * @return the number of remaining elements in this buffer. */ public final int remaining() { return limit - position; }
(7)Buffer的抽象子类ByteBuffer的compact()方法也蛮重要的。compact()的作用是压缩数据。比如当前EOF是6,当前指针指向2(即0,1的数据已经写出了,没用了),那么compact方法将把2,3,4,5的数据挪到0,1,2,3的位置,然后指针指向4的位置。这样的意思是,从4的位置接着再写入数据。
/** * Compacts this byte buffer. * <p> * The remaining bytes will be moved to the head of the * buffer, starting from position zero. Then the position is set to * {@code remaining()}; the limit is set to capacity; the mark is * cleared. * * @return {@code this} * @throws ReadOnlyBufferException * if no changes may be made to the contents of this buffer. */ public abstract ByteBuffer compact();
(8)equals()
当满足下列条件时,表示两个Buffer相等:
- 有相同的类型(byte、char、int等)。
- Buffer中剩余的byte、char等的个数相等。
- Buffer中所有剩余的byte、char等都相同。
equals只是比较Buffer的一部分,不是每一个在它里面的元素都比较(即它只比较Buffer中的剩余元素)。
以ByteBuffer为例
-
/** * Tells whether or not this buffer is equal to another object. * * <p> Two byte buffers are equal if, and only if, * * <ol> * * <li><p> They have the same element type, </p></li> * * <li><p> They have the same number of remaining elements, and * </p></li> * * <li><p> The two sequences of remaining elements, considered * independently of their starting positions, are pointwise equal. * </p></li> * * </ol> * * <p> A byte buffer is not equal to any other type of object. </p> * * @param ob The object to which this buffer is to be compared * * @return <tt>true</tt> if, and only if, this buffer is equal to the * given object */ public boolean equals(Object ob) { if (this == ob) return true; if (!(ob instanceof ByteBuffer)) return false; ByteBuffer that = (ByteBuffer)ob; if (this.remaining() != that.remaining()) return false; int p = this.position(); for (int i = this.limit() - 1, j = that.limit() - 1; i >= p; i--, j--) if (!equals(this.get(i), that.get(j))) return false; return true; }
(9)compareTo()
compareTo()方法比较两个Buffer的剩余元素(byte、char等), 如果满足下列条件,则认为一个Buffer“小于”另一个Buffer:
- 第一个不相等的元素小于另一个Buffer中对应的元素 。
- 所有元素都相等,但第一个Buffer比另一个先耗尽(第一个Buffer的元素个数比另一个少)。
以ByteBuffer为例
-
/** * Compares this buffer to another. * * <p> Two byte buffers are compared by comparing their sequences of * remaining elements lexicographically, without regard to the starting * position of each sequence within its corresponding buffer. * Pairs of {@code byte} elements are compared as if by invoking * {@link Byte#compare(byte,byte)}. * * <p> A byte buffer is not comparable to any other type of object. * * @return A negative integer, zero, or a positive integer as this buffer * is less than, equal to, or greater than the given buffer */ public int compareTo(ByteBuffer that) { int n = this.position() + Math.min(this.remaining(), that.remaining()); for (int i = this.position(), j = that.position(); i < n; i++, j++) { int cmp = compare(this.get(i), that.get(j)); if (cmp != 0) return cmp; } return this.remaining() - that.remaining(); }
补充:
-
由于ByteBuffer是非线程安全的,所以多线程访问的时候也必须加锁。
-
ByteBuffer在内部也是利用byte[]作为内存缓冲区,只不过多提供了一些标记变量而已。当多线程访问的时候,可以清楚的知道当前数据的位置。
以上是关于Java NIO —— Buffer(缓冲区)的主要内容,如果未能解决你的问题,请参考以下文章